cho tam giác ABC có AB = 3, AC = 4. I thuộc đường phân giác trong AD của tam giác sao cho 7 AD = 10 AI, M là trung điểm của AC :
a) Tính BD qua DC và AI qua ID
b) Tính AD ,AI qua AB và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y=(m−1)x+3y=(m-1)x+3
Hàm số là hàm số bậc nhất khi
m−1≠0m-1≠0
⇔m≠1⇔m≠1
Vậy m≠1m≠1 thì hàm số đã cho là hàm số bậc nhất
b,
y=(m−1)x+3y=(m-1)x+3
Hàm số đồng biến trên RR khi
m−1>0m-1>0
⇔m>1⇔m>1
Vậy với m>1m>1 thì hàm số đã cho đồng biến trên RR
c,
y=(m−1)x+3y=(m-1)x+3
Hàm số nghịch biến trên RR khi
m−1<0m-1<0
⇔m<1⇔m<1
Vậy với m<1m<1 thì hàm số đã cho nghịch biến trên R
Sử dụng phương pháp biện luận bất phương trình bậc nhất một ẩn:
- Nếu a>0a>0 thì ax+b>0ax+b>0⇔x>−ba⇔x>−ba nên S=(−ba;+∞)≠∅S=(−ba;+∞)≠∅ .
- Nếu a<0a<0 thì ax+b>0ax+b>0⇔x<−ba⇔x<−ba nên S=(−∞;−ba)≠∅S=(−∞;−ba)≠∅ .
- Nếu a=0a=0 thì ax+b>0ax+b>0 có dạng 0x+b>00x+b>0
+ Với b>0b>0 thì S=R.S=R.
+ Với b≤0b≤0 thì S=∅.
Kêu nếu chép mạng thì cho thêm báo cáo vs báo admin mà vẫn chép kìa . 2k9 làm lớp 10 .Giỏi đấy :))
Làm thử , ko vừa ý thì bỏ qua nha .
Bài làm :
\(m\left(x-1\right)=5x-2\)
\(\Leftrightarrow mx-4m-5x=-2\)
\(\Leftrightarrow\left(m-5\right)x=4m-2\left(1\right)\)
+) Với m - 5 # 0
=> ( 1 ) có nghiệm \(x=\frac{4m-2}{m-5}\)
+) Với \(\hept{\begin{cases}m-5=0\\4m-2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\m\ne\frac{1}{2}\end{cases}}}\)
=> ( 1 ) trở thành 0x = 18
=> Pt vô nghiệm
+) với \(\hept{\begin{cases}m-5=0\\4m-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}m=5\\m=\frac{1}{2}\end{cases}}}\)
=> ( 1 ) trở thành 0x = 0
=> Pt có vô số nghiệm
m(x – 4) = 5x – 2 ⇔(m - 5)x = 4m - 2
Nếu m - 5 ≠ 0 ⇔ m ≠ 5 thì phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Nếu m – 5 = 0 ⇔ m = 5, phương trình trở thành:
0.x = 18 ⇒ phương trình vô nghiệm
Vậy với m ≠ 5 phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Với m = 5 phương trình vô nghiệm.
Số tuổi hiện nay của em là :
( 25 - 5 ) : 2 - 5 = 4 ( tuổi )
Số tuổi hiện nay của anh là :
( 25 + 5 ) : 2 - 5 = 10 ( tuổi )
Đáp số : 10 và 4 tuổi
Đáp án:
Anh: 10 tuổi
Em: 5 tuổi
Giải thích các bước giải:
Vì mỗi năm mỗi người tăng thêm 1 tuổi nên số tuổi giữa hai anh em sau 5 năm nữa không thay đổi và vẫn bằng 5.
Tuổi em sau 5 năm nữa là:
(25-5) : 2 = 10 (tuổi)
Tuổi em hiện nay là:
10-5=5 (tuổi)
Tuổi anh hiện nay là:
5+5=10 (tuổi)
Đáp số: Anh: 10 tuổi
Em: 5 tuổi
m(x – 4) = 5x – 2 ⇔(m - 5)x = 4m - 2
Nếu m - 5 ≠ 0 ⇔ m ≠ 5 thì phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Nếu m – 5 = 0 ⇔ m = 5, phương trình trở thành:
0.x = 18 ⇒ phương trình vô nghiệm
Vậy với m ≠ 5 phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Với m = 5 phương trình vô nghiệm.
Giải và biện luận phương trình sau theo tham số m: m(x – 4) = 5x – 2.
\(m\left(x-4\right)=5x-2\\ \Rightarrow mx-4x=5x-2\\\Rightarrow mx-5x=4x-2\\ \Rightarrow x\left(m-5\right)=4x-2 \)
Trong trường hợp phương trình có nghiệm duy nhất thì
\(m-5\ne0\\ \Rightarrow m\ne5\)=> \(x=\frac{4m-2}{m-5}\)
Còn trong trường hợp m - 5 = 0 <=> m = 5 thì
\(x=\frac{20-2}{5-5}=>0.x=18\)
=> Phương trình vô nghiệm
Vậy ta có kết luận
Phương trình có nghiệm duy nhất khi \(m\ne5\)
Phương trình vô nghiệm khi m = 5
m(x – 4) = 5x – 2 ⇔(m - 5)x = 4m - 2
Nếu m - 5 ≠ 0 ⇔ m ≠ 5 thì phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Nếu m – 5 = 0 ⇔ m = 5, phương trình trở thành:
0.x = 18 ⇒ phương trình vô nghiệm
Vậy với m ≠ 5 phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Với m = 5 phương trình vô nghiệm.