K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2023

\(k^2=\left(m+1\right)\left(m^2+2m\right)\) là số chính phương

\(\Rightarrow k^2=m\left(m+1\right)\left(m+2\right)\ge0\)

Lập bảng xét dấu

       \(m\)             \(-2\)             \(-1\)              \(0\)
       \(m\)        \(-\)     \(|\)       \(-\)       \(|\)     \(-\)      \(0\)       \(+\)
    \(m+1\)        \(-\)     \(|\)       \(-\)       \(0\)     \(+\)      \(|\)       \(+\)
    \(m+2\)        \(-\)     \(0\)       \(+\)       \(|\)     \(+\)      \(|\)       \(+\)   
\(m\left(m+1\right)\left(m+2\right)\)        \(-\)     \(0\)       \(+\)       \(0\)     \(-\)     \(0\)       \(+\)

\(\Rightarrow\left[{}\begin{matrix}-2\le m\le0\\m>0\end{matrix}\right.\)

\(TH1:\) \(-2\le m\le0\Rightarrow m\in\left\{-2;-1;0\right\}\) thỏa mãn \(k^2=0\ge0\)

\(TH2:\) \(m>0\)

\(k^2=\left(m+1\right)\left(m^2+2m\right)\)

\(d=UC\left(m+1;m^2+2m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}m+1⋮d\\m^2+2m⋮d\end{matrix}\right.\)

\(\Rightarrow m^2+2m-2\left(m+1\right)⋮d\)

\(\Rightarrow m^2+2m-2m-1⋮d\)

\(\Rightarrow-1⋮d\)

\(\Rightarrow d\in\left\{-1;1\right\}\)

\(\Rightarrow\left(m+1\right)\left(m^2+2m\right)\) là số chính phương khi chúng là số chính phương.

Ta lại có :

\(\left(m+1\right)\left(m^2+2m\right)=m\left(m+1\right)\left(m+2\right)\) là tích của 3 số liên tiếp nhau không phải là số chính phương khi m>0

Vậy \(m\in\left\{-2;-1;0\right\}\) thỏa mãn đề bài

27 tháng 8 2023

loading...

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
$\frac{2}{7}x+\frac{1}{5}=\frac{1}{3}+\frac{7}{2}$

$\frac{2}{7}x+\frac{1}{5}=\frac{23}{6}$

$\frac{2}{7}x=\frac{23}{6}-\frac{1}{5}$

$\frac{2}{7}x=\frac{109}{30}$

$x=\frac{109}{30}: \frac{2}{7}=\frac{763}{60}$

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
$\frac{1}{2}x+\frac{1}{5}=\frac{1}{3}+\frac{7}{2}$

$\frac{1}{2}x+\frac{1}{5}=\frac{23}{6}$

$\frac{1}{2}x=\frac{23}{6}-\frac{1}{5}=\frac{109}{30}$

$x=\frac{109}{30}: \frac{1}{2}=\frac{109}{15}$

26 tháng 8 2023

= 7 - 3 căn 5 + 1

Nó ra xấp xỉ mà nhỉ đề vô lí vậy ta

26 tháng 8 2023

Giải thích seo cho hs lớp 7 hiểu cùng ạ.

26 tháng 8 2023

\(\sqrt[]{x+2}=-100\)

vì \(\sqrt[]{x+2}\ge0\)

Nên phương trình trên vô nghiệm

26 tháng 8 2023

vì �+2≥0

Nên phương trình trên vô nghiệm

Chúc bạn nha

25 tháng 8 2023

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

25 tháng 8 2023

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

25 tháng 8 2023

Để chứng minh rằng ba điểm B, A và C thẳng hàng, chúng ta cần sử dụng các thông tin đã cho và các quy tắc trong hình học.

Gọi G là giao điểm của đường thẳng FA và đường thẳng CE.

Vì tam giác EFM vuông tại E, nên ta có: ∠EMF = 90° Vì FA là phân giác của ∠EMF, nên ta có: ∠FAG = ∠GEM Vì CE là tia đối của tia EF,

nên ta có: ∠GEC = ∠FEM Vì CE = MB, nên ta có: ∠ECG = ∠MBC

Vì ∠GEC = ∠FEM và ∠ECG = ∠MBC, nên ta có: ∠FEM = ∠MBC Vì ∠FAG = ∠GEM và ∠FEM = ∠MBC,

nên ta có: ∠FAG = ∠MBC

Vậy ta có hai góc cùng nhìn trên cùng một đường thẳng, nên ta có: B, A, C thẳng hàng.

Vậy ta đã chứng minh được rằng ba điểm B, A và C thẳng hàng.