K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có

\(\widehat{EAC}\) chung

Do đó: ΔAEC~ΔAHB

b; Xét ΔHCB vuông tại H và ΔKAC vuông tại K có

\(\widehat{HCB}=\widehat{KAC}\)(AD//BC)

Do đó: ΔHCB~ΔKAC

=>\(\dfrac{HC}{AK}=\dfrac{BC}{CA}\)

=>\(BC\cdot AK=CH\cdot CA\)

c: Xét ΔBHA vuông tại H có \(sinBAH=\dfrac{BH}{BA}\)

=>\(\dfrac{2}{BA}=sin30=\dfrac{1}{2}\)

=>BA=4(cm)

ΔAHB~ΔAEC

=>\(\dfrac{S_{AHB}}{S_{AEC}}=\left(\dfrac{AB}{AC}\right)^2=\left(\dfrac{4}{3}\right)^2=\dfrac{16}{9}\)

8 tháng 7 2024

a) 

\(A=\dfrac{1,11+0,19-13.2}{2,06+0,54}-\left(\dfrac{1}{2}+\dfrac{1}{4}\right):2\\ =\dfrac{1,3-26}{2,6}-\dfrac{3}{4}.\dfrac{1}{2}\\ =\dfrac{1,3\left(1-20\right)}{1,3.2}-\dfrac{3}{8}\\ =\dfrac{-19}{2}-\dfrac{3}{8}=-\dfrac{79}{8}\)

\(B=\left(5\dfrac{7}{8}-2\dfrac{1}{4}-0,5\right):2\dfrac{23}{26}\\ =\left(5+\dfrac{7}{8}-2-\dfrac{1}{4}-0,5\right):\dfrac{75}{26}\\ =\left[\left(3-0,5\right)+\left(\dfrac{7}{8}-\dfrac{2}{8}\right)\right]:\dfrac{75}{26}\\ =\left(2,5+\dfrac{5}{8}\right):\dfrac{75}{26}\\ =\dfrac{25}{8}.\dfrac{26}{75}=\dfrac{13}{12}\)

b) Để \(A< x< B\) thì: \(-\dfrac{79}{8}< x< \dfrac{13}{12}\)

\(\Rightarrow x\in\left\{-9;-8;-7;...;1\right\}\) (do \(x\in\mathbb{Z}\))

a: \(3\cdot9\cdot\left(-27\right)=3\cdot3^2\cdot\left(-3^3\right)=-3^6\)

b: \(5\cdot25\cdot\left(-125\right)^2=5\cdot5^2\cdot\left(5^3\right)^2=5^9\)

c: \(0,5\cdot\left(-0,25\right)\cdot0,0625=0,5\cdot\left(-1\right)\cdot\left(0,5\right)^2\cdot\left(0,5\right)^4\)

\(=-\left(0,5\right)^7\)

d: \(2\cdot32\cdot\left(-1024\right)=2\cdot2^5\cdot\left(-1\right)\cdot2^{10}=-2^{16}\)

e: \(49\cdot7^3\cdot\left(-7\right)^3=7^2\cdot7^3\cdot\left(-1\right)\cdot7^3=-7^8\)

f: \(\dfrac{3}{4}\cdot\dfrac{9}{16}\cdot\dfrac{27}{64}=\dfrac{3}{4}\cdot\left(\dfrac{3}{4}\right)^2\cdot\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^6\)

8 tháng 7 2024

a, 3.9.27

= - 3.32.33

= - 31+2+3 

= - 33+3

= - 36

 

 

1: \(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}\)

\(=-\dfrac{40}{60}+\dfrac{45}{60}+\dfrac{10}{60}-\dfrac{24}{60}\)

\(=\dfrac{5-14}{60}=-\dfrac{9}{60}=-\dfrac{3}{20}\)

2: \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}\)

\(=\left(-\dfrac{2}{3}+\dfrac{3}{4}-\dfrac{5}{6}\right)+\left(-\dfrac{1}{5}+\dfrac{7}{10}\right)\)

\(=\left(-\dfrac{8}{12}+\dfrac{9}{12}-\dfrac{10}{12}\right)+\left(-\dfrac{2}{10}+\dfrac{7}{10}\right)\)

\(=\dfrac{-9}{12}+\dfrac{5}{10}=-\dfrac{3}{4}+\dfrac{1}{2}=-\dfrac{3}{4}+\dfrac{2}{4}=-\dfrac{1}{4}\)

3: \(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)

\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\)

\(=\dfrac{3+2+1}{6}+\dfrac{14+25-4}{35}+\dfrac{1}{41}\)

\(=\dfrac{6}{6}+\dfrac{35}{35}+\dfrac{1}{41}=2+\dfrac{1}{41}=\dfrac{83}{41}\)

4: \(\dfrac{1}{100\cdot99}-\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)

\(=\dfrac{1}{100\cdot99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{97\cdot98}+\dfrac{1}{98\cdot99}\right)\)

\(=\dfrac{1}{100\cdot99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{98}{99}=\dfrac{-97}{99}-\dfrac{1}{100}=\dfrac{-9799}{9900}\)

5: \(\dfrac{\left(\dfrac{3}{10}-\dfrac{4}{15}-\dfrac{7}{20}\right)\cdot\dfrac{5}{19}}{\left(\dfrac{1}{14}+\dfrac{1}{7}-\dfrac{-3}{35}\right)\cdot\dfrac{-4}{3}}=\dfrac{\dfrac{18-16-21}{60}\cdot\dfrac{5}{19}}{\dfrac{5+10+6}{70}\cdot\dfrac{-4}{3}}\)

\(=\dfrac{\dfrac{-19}{60}\cdot\dfrac{5}{19}}{\dfrac{21}{70}\cdot\dfrac{-4}{3}}=\dfrac{-5}{60}:\dfrac{-84}{210}=\dfrac{-1}{12}\cdot\dfrac{-5}{2}=\dfrac{5}{24}\)

6: \(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)

\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=\dfrac{4}{4}=1\)

1 tháng 10 2024

Là sai chứ sao

Gọi mẫu số của phân số cần tìm là x

Theo đề, ta có: \(-\dfrac{11}{13}< \dfrac{9}{x}< \dfrac{-11}{15}\)

=>\(\dfrac{11}{13}>\dfrac{-9}{x}>\dfrac{11}{15}\)

=>\(\dfrac{99}{117}>\dfrac{-99}{11x}>\dfrac{99}{135}\)

=>\(\dfrac{99}{117}>\dfrac{99}{-11x}>\dfrac{99}{135}\)

=>\(-11x\in\left\{118;119;...;134\right\}\)

=>\(x\in\left\{-\dfrac{118}{11};-\dfrac{119}{11};...;\dfrac{134}{-11}\right\}\)

mà x nguyên

nên \(x\in\left\{-11;-12\right\}\)

Vậy: Hai phân số cần tìm là \(\dfrac{9}{-11};\dfrac{9}{-12}\)

 

=>

8 tháng 7 2024

\(\dfrac{a}{d}+\dfrac{c}{d}=\dfrac{a}{b}\cdot\dfrac{c}{d}\\ =>\dfrac{a}{b}\cdot\dfrac{c}{d}-\dfrac{c}{d}=\dfrac{a}{b}\\ =>\dfrac{c}{d}\cdot\left(\dfrac{a}{b}-1\right)=\dfrac{a}{b}\\ =>\dfrac{c}{d}\cdot\dfrac{a-b}{b}=\dfrac{a}{b}\\ =>\dfrac{c}{d}=\dfrac{a}{b}:\dfrac{a-b}{b}\\ =>\dfrac{c}{d}=\dfrac{a}{b}\cdot\dfrac{b}{a-b}\\ =>\dfrac{c}{d}=\dfrac{a}{a-b}\)

Vậy: ... 

8 tháng 7 2024

a) Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)

b) \(A=-3=>\dfrac{2n-7}{n-2}=-3\)

\(=>2n-7=-3\left(n-2\right)\\ =>2n-7=-3n+6\\ =>2n+3n=6+7\\ =>5n=13\\ =>n=\dfrac{13}{5}\left(ktm\right)\) 

c) \(A=\dfrac{2n-7}{n-2}=\dfrac{2n-4-3}{n-2}=\dfrac{2\left(n-2\right)-3}{n-2}=2-\dfrac{3}{n-2}\)

Để A nguyên thì: 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ={1; -1; 3; -3}

=> n ∈ {3; 1; 5; -1} 

d) Để A lớn nhất thì \(\dfrac{3}{n-2}\) nhỏ nhất 

=> \(\dfrac{3}{n-2}=-1\)

=>  3 = -(n - 2)

=> 3 = -n + 2

=> n = -1  

e) Để A nhỏ nhất thì \(\dfrac{3}{n-2}\) lớn nhất

=> \(\dfrac{3}{n-2}=1\)

=> 3 = n - 2

=> n = 3 + 2 

=> n = 5

f) Để A là phân số tối giản => ƯCLN(2n - 7; n - 2) = 1

=> ƯCLN(3; n - 2) = 1

=> n - 2 không chia hết cho 3

=> n - 2 ≠ 3k 

=> n ≠ 3k + 2

g) Gọi d là ước nguyên tố của 2n - 7 và n - 2 ta có: 

2n - 7 ⋮ d và n - 2 ⋮ d 

=> 2n - 7 ⋮ d và 2(n - 2) ⋮ d

=> (2n - 4)  - (2n - 7) ⋮ d

=> 3 ⋮ d 

=> d ∈ {1; -1; 3; -3}

Mà d là STN => d = 3 

Với d = 3 => 2n - 7 ⋮ 3 => 2(2n - 7) ⋮ 3 => 4n - 7 ⋮ 3 

=> 3n + n - 7 ⋮ 3 

=> n - 7 ⋮ 3 

=> n - 7 = 3k 

=> n = 3k + 7 

10 tháng 7 2024

bạn cho mình hỏi sao câu d và câu e lại là -1 và 1 thế ạ?

 

Tỉ số giữa 6 và mẫu số là:

\(\dfrac{1}{3}-\dfrac{2}{9}=\dfrac{3}{9}-\dfrac{2}{9}=\dfrac{1}{9}\)

Mẫu số là 6x9=54

Tử số là \(54:9\times2=6\times2=12\)

Vậy: phân số cần tìm là \(\dfrac{12}{54}\)

8 tháng 7 2024

        Đây là dạng toán nâng cao hai tỉ số, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                  Giải 

Tỉ số của tử số lúc đầu và từ số lúc sau là: \(\dfrac{2}{9}\) : \(\dfrac{1}{3}\)  = \(\dfrac{2}{3}\)

Theo bài ra ta có sơ đồ:

Theo sơ đồ ta có: 

Tử số lúc đầu là: 6 : (3 - 2) x 2 =  12

Mẫu số lúc đầu là: 12 : \(\dfrac{2}{9}\) = 54

Phân số cần tìm là: \(\dfrac{12}{54}\)

ĐKXĐ: \(x\ne\pm y\)

Phương trình ở dưới thiếu vế phải rồi bạn