Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như đây là câu 2 ở đề thi HSG Toán 9 cấp thành phố ở TP.HCM thì phải :))
x2( 2 - x )2 = 3( 1 - x )2 - 5
<=> ( x2 - 2x )2 - 3( x2 - 2x + 1 ) + 5 = 0
<=> x4 - 4x3 + 4x2 - 3x2 + 6x - 3 + 5 = 0
<=> x4 - 4x3 + x2 + 6x + 2 = 0
<=> ( x2 - 2x - 2 )( x2 - 2x - 1 ) = 0
<=> x2 - 2x - 2 = 0 hoặc x2 - 2x - 1 = 0
đến đây bạn xét Δ rồi áp dụng công thức nghiệm là xong !!!
Con Ly lớp mình, thằng bạn cũ tên Nghiêm, nói chung là ghét gần hết mọi người trừ chó và mấy đứa bạn thân cùng gia đình mình.
Gọi K là giao của AO với đường tròn
Gọi M và N lần lượt là giao của BD với AC bà CE với AB. Xét tg vuông ABM và ACN có \(\widehat{BAC}\) chung
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Mà sđ\(\widehat{ABD}=\frac{1}{2}\) sđ cung AD và sđ \(\widehat{ACE}=\frac{1}{2}\) sđ cung AE => sđ cung AD = sđ cung AE (1)
Ta có sđ cung AEK = sđ cung ADK (2)
sđ cung EK = sđ cung AEK - sđ cung AE (3)
sđ cung DK = sđ cung ADK - sđ cung AD (4)
Từ (1) (2) (3) và (4) => sđ cung EK = sđ cung DK (*)
sđ \(\widehat{EDK}=\frac{1}{2}\) sđ cung EK và sđ \(\widehat{DEK}=\frac{1}{2}\) sđ cung DK (**)
Từ (*) và (**) \(\Rightarrow\widehat{EDK}=\widehat{DEK}\) => tam giác KDE cân tại K (***)
Mặt khác
\(\widehat{AKE}=\widehat{ACE}\) (Góc nội tiếp cùng chắn cung AE)
\(\widehat{AKD}=\widehat{ABD}\) (Góc nội tiếp cùng chắn cung AD)
Mà \(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(\Rightarrow\widehat{AKE}=\widehat{AKD}\) => AO là phân giác của \(\widehat{DKE}\) (****)
Twg (***) và (****) \(\Rightarrow AO\perp ED\) (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Ai có đề kiểm tra giữa kì 2 môn Toán lớp 9 không thì cho mình xin full với ạ??? Mình cảm ơn nhiều ạ.
Câu 1: Cho phương trình 2x – y = 5. Phương trình nào sau đây kết hợp với phương trình đã cho để được một hệ phương trình có vô số nghiệm?
A. x – y = 5 | B. – 6x + 3y = 15 | C. 6x + 15 = 3y | D. 6x – 15 = 3y. |
Câu 2: Trong các hàm số sau, hàm số nào đồng biến khi x < 0?
A. y = -2x | B. y = -x + 10 | C. y = (- 2)x2 | D. y = x2 |
Câu 3: Cho hàm số y = f(x) = 2ax2 (Với a là tham số). Kết luận nào sau đây là đúng?
A. Hàm số f(x) đạt giá tri lớn nhất bằng 0 khi a < 0.
B. Hàm số f(x) nghịch biến với mọi x < 0 khi a > 0
C. Nếu f(-1) = 1 thì
D. Hàm số f(x) đồng biến khi a >0
Câu 4: Trong mặt phẳng tọa độ Oxy, đồ thị các hàm số y = 2x2 và y = 3x – 1 cắt nhau tại hai điểm có hoành độ là:
A. 1 và | B. -1 và | C. 1 và | D. -1 và |
Câu 5: Phương trình x2 -2x – m = 0 có nghiệm khi:
A. m1 | B. m -1 | C. m1 | D. m - 1 |
Câu 6: Cho ABC đều nội tiếp đường tròn (O). Số đo cung AB nhỏ là:
A. 300 | B. 600 | C. 900 | D. 1200 |
Câu 7: Một hình vuông có cạnh 6cm thì đường tròn ngoại tiếp hình vuông có bán kính bằng:
A. cm | B. cm | C. cm | D. cm |
Câu 8: Mệnh đề nào sau đây là sai:
A. Hình thang cân nội tiếp được một đường tròn.
B. Hai cung có số đo bằng nhau thì bằng nhau.
C. Hai cung bằng nhau thì có số đo bằng nhau.
D. Hai góc nội tiếp bằng nhau thì cùng chắn một cung.
II. PHẦN TỰ LUẬN( 8 điểm):
Bài 1:(2điểm)
Cho phương trình x2 – mx + m – 1 = 0 (1)
a) Giải phương trình (1) với m =-2
b) Chứng tỏ phương trình (1) luôn có nghiệm x1, x2với mọi giá trị của m.
c) Tìm giá trị của m để phương trình (1) có 1 nghiệm bằng 3 . Tìm nghiệm còn lại
Bài 2: (2 điểm)
a, Vẽ đồ thị hàm số (P) y=1/2x^2
b, Tìm giá trị của m sao cho điểm C(-2; m) thuộc đồ thị (P)
c, Tìm tọa độ giao điểm của đường thẳng y = x - 0,5 và parabol (P)
Bài 3: (3 điểm)
Cho nửa đường tròn (O) đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tuỳ ý trên cung CB ( D khác C và B ). Các tia AC, AD cắt tia Bx theo thứ tự là E và F .
a, Chứng minh tam giác ABE vuông cân.
b, Chứng minh
c, Chứng minh tứ giác CDFE nội tiếp
\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)
Vậy GTNN của Q là 1 <=> x = y = 2
Or
\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*
Do đó \(Q\ge1\)
Đẳng thức xảy ra khi x = y = 2