tính hợp lý
a,(-4/5 + 3/7 - 1/2 ) + ( 1/2 - 1/5 + 2/7 )
b, (7 - 3/4 +1/3 ) - ( 6 + 5/4 - 4/3 ) -( 5 - 7/4 + 5/3 )
c,( 0,25 + 7/9 - 1,7 ) - ( 0,75 - 2/9 - 1/7 )
2/7 +1/3 - 2/9
d,--------------------------
3/7 + 1/2 - 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{-3}{21}+\dfrac{-2}{7}+\dfrac{1}{3}=\dfrac{-3}{21}+\dfrac{-6}{21}+\dfrac{7}{21}=-\dfrac{2}{21}\)
b) \(\dfrac{-13}{15}+\dfrac{5}{-18}+\dfrac{4}{9}=\dfrac{-78}{90}+\dfrac{-25}{90}+\dfrac{40}{90}=\dfrac{63}{90}=\dfrac{7}{10}\)
c) \(\dfrac{-2}{5}-\left(\dfrac{-3}{11}\right)=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d) \(\left(-4\right)-\left(\dfrac{-4}{5}\right)-\dfrac{2}{3}=\left(-4\right)+\dfrac{4}{5}-\dfrac{2}{3}=\dfrac{-60}{15}+\dfrac{12}{15}-\dfrac{10}{15}=\dfrac{-58}{15}\)
e) \(\dfrac{3}{5}+\left(\dfrac{-4}{3}\right)-\dfrac{-3}{4}=\dfrac{3}{5}+\left(\dfrac{-4}{3}\right)+\dfrac{3}{4}=\dfrac{36}{60}+\dfrac{-80}{60}+\dfrac{45}{60}=\dfrac{1}{60}\)
g) \(\dfrac{5}{8}-\left(-\dfrac{2}{5}\right)-\dfrac{3}{10}=\dfrac{5}{8}+\dfrac{2}{5}-\dfrac{3}{10}=\dfrac{25}{40}+\dfrac{16}{40}-\dfrac{12}{40}=\dfrac{29}{40}\)
h) \(\dfrac{3}{4}-\left(-\dfrac{5}{3}\right)+\left(\dfrac{1}{12}+\dfrac{2}{9}\right)=\dfrac{3}{4}+\dfrac{5}{3}+\left(\dfrac{3}{36}+\dfrac{8}{36}\right)=\dfrac{27}{36}+\dfrac{60}{36}+\dfrac{11}{36}=\dfrac{98}{36}=\dfrac{49}{18}\)
a) \(\dfrac{-3}{21}+\dfrac{-2}{7}+\dfrac{1}{3}=\dfrac{-3}{21}-\dfrac{6}{21}+\dfrac{7}{21}\\ =\dfrac{-3-6+7}{21}=-\dfrac{2}{21}\)
b) \(\dfrac{-13}{15}+\dfrac{5}{-18}+\dfrac{4}{9}=\dfrac{-78}{90}-\dfrac{25}{90}+\dfrac{40}{90}\\ =\dfrac{-78-25+40}{90}=\dfrac{-63}{90}=-\dfrac{7}{10}\)
c) \(\dfrac{-2}{5}-\left(\dfrac{-3}{11}\right)=-\dfrac{2}{5}+\dfrac{3}{11}\\ =-\dfrac{22}{55}+\dfrac{15}{55}=-\dfrac{7}{55}\)
a: Trên tia Ox, ta có: OA<OB
nên A nằm giữa O và B
=>OA+AB=OB
=>AB+4=6
=>AB=2(cm)
b: C là trung điểm của OA
=>\(CO=CA=\dfrac{OA}{2}=2\left(cm\right)\)
Vì AO và AB là hai tia đối nhau
nên AC và AB là hai tia đối nhau
=>A nằm giữa hai điểm B và C
Ta có: A nằm giữa B và C
mà AB=AC(=2cm)
nên A là trung điểm của BC
d: Các góc đỉnh D trong hình vẽ là: \(\widehat{ODC};\widehat{ODA};\widehat{ODB};\widehat{CDA};\widehat{CDB};\widehat{ADB}\)
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>DA=DM
mà DM<DC(ΔDMC vuông tại M)
nên DA<DC
c: ΔBAD=ΔBMD
=>BA=BM
=>ΔBAM cân tại B
Ta có: ΔBAM cân tại B
mà BI là đường phân giác
nên BI\(\perp\)AM và I là trung điểm của AM
Ta có: BI\(\perp\)AM
ME\(\perp\)AM
Do đó: ID//ME
Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: D là trung điểm của AE
Xét ΔAME có
AK,EI,MD là các đường trung tuyến
Do đó: AK,EI,MD đồng quy
a) \(x^2-36=0\)
\(\Leftrightarrow x^2-6^2=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy: ...
b) \(x^2-10x+25=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot5+5^2=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
Vậy: ...
a) \(x^2-36=0\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy \(x\in\left\{6;-6\right\}\)
b) \(x^2-10x+25=0\)
\(\Leftrightarrow x^2-2.x.5+5^2=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
(2x - 5) + 17 = 6
2x - 5 = 6 - 17
2x - 5 = - 11
2x = -11 + 5
2x = -6
x = `(-6)/2`
x = -3
(lớp 5 chưa học số âm)
( 2x - 5 ) + 17 = 6
2x - 5 = 6 - 17
2x - 5 = -11
2x = -11 + 5
2x = -6
x = -6 : 2
x = -3
a) \(\left(3x-1\right)\left(x+2\right)-\left(x+2\right)^2\)
\(=\left(3x^2+6x-x-2\right)-\left(x+2\right)^2\)
\(=\left(3x^2+5x-2\right)-\left(x^2+4x+4\right)\)
\(=3x^2+5x-2-x^2-4x-4\)
\(=2x^2+x-6\)
b) \(\left(x-1\right)\left(x+1\right)-\left(x^2-2x+1\right)\)
\(=\left(x^2-1\right)-\left(x^2-2x+1\right)\)
\(=x^2-1-x^2+2x-1\)
\(=2x-2\)
c) \(\left(x-4\right)\left(4+x\right)+2x\left(x-3\right)\)
\(=\left(x-4\right)\left(x+4\right)+2x\left(x-3\right)\)
\(=\left(x^2-16\right)+2x^2-6x\)
\(=x^2-16+2x^2-6x\)
\(=3x^2-6x-16\)
d) \(\left(x-1\right)\left(x^2-1\right)+\left(x+2\right)^3\)
\(=\left(x^3-x-x^2+1\right)+\left(x^3+6x^2+12x+8\right)\)
\(=x^3-x-x^2+1+x^3+6x^2+12x+8\)
\(=2x^3+5x^2+11x+9\)
e) \(\left(2x-1\right)^2-\left(2x-5\right)\left(x+5\right)\)
\(=\left(4x^2-4x+1\right)-\left(2x^2+10x-5x-25\right)\)
\(=\left(4x^2-4x+1\right)-\left(2x^2+5x-25\right)\)
\(=4x^2-4x+1-2x^2-5x+25\)
\(=2x^2-9x+26\)
f) \(\left(3x+1\right)^2-\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(9x^2+6x+1\right)-\left(x^4+2x^2-x^2-2\right)\)
\(=\left(9x^2+6x+1\right)-\left(x^4+x^2-2\right)\)
\(=9x^2+6x+1-x^4-x^2+2\)
\(=-x^4+8x^2+6x+3\)
g) \(\left(x^2+1\right)^2-\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(x^4+2x^2+1\right)-\left(x^4+2x^2-x^2-2\right)\)
\(=\left(x^4+2x^2+1\right)-\left(x^4+x^2-2\right)\)
\(=x^4+2x^2+1-x^4-x^2+2\)
\(=x^2+3\)
h) \(\left(2x^2-4\right)^2-\left(2x^2+4\right)^2\)
\(=\left(4x^4-16x^2+16\right)-\left(4x^4+16x^2+16\right)\)
\(=4x^4-16x^2+16-4x^4-16x^2-16\)
\(=-32x^2\)
\(\dfrac{34+17\times14}{16\times36-32}\)
\(=\dfrac{34+\left(17\times2\right)\times7}{16\times36-16\times2}\)
\(=\dfrac{34+34\times7}{16\times\left(36-2\right)}\)
\(=\dfrac{34\times\left(1+7\right)}{34\times16}\)
\(=\dfrac{8}{16}\)
\(=\dfrac{1}{2}\)
\(a.\left(\dfrac{-4}{5}+\dfrac{3}{7}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{2}{7}\right)\\ =\dfrac{-4}{5}+\dfrac{2}{7}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{2}{7}\\ =\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)+\left(\dfrac{2}{7}+\dfrac{2}{7}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)\\ =-1+\dfrac{4}{7}+0=-\dfrac{3}{7}\)
\(b.\left(7-\dfrac{3}{4}+\dfrac{1}{3}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\\ =7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\\ =\left(7-6-5\right)+\left(\dfrac{7}{4}-\dfrac{3}{4}-\dfrac{5}{4}\right)+\left(\dfrac{1}{3}+\dfrac{4}{3}-\dfrac{5}{3}\right)\\=1+\dfrac{-1}{4}+0=\dfrac{3}{4}\)
a)
\(\left(-\dfrac{4}{5}+\dfrac{3}{7}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{2}{7}\right)\\ =\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)+\left(\dfrac{3}{7}+\dfrac{2}{7}\right)+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)\\ =-\dfrac{5}{5}+\dfrac{5}{7}+0\\ =-1+\dfrac{5}{7}\\ =-\dfrac{2}{7}\)
b)
\(\left(7-\dfrac{3}{4}+\dfrac{1}{2}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\\ =7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\\ =\left(7-6-5\right)+\left(-\dfrac{3}{4}-\dfrac{5}{4}+\dfrac{7}{4}\right)+\left(\dfrac{1}{3}+\dfrac{4}{3}-\dfrac{5}{3}\right)\\ =\left(-4\right)+\left(\dfrac{-1}{4}\right)+0\\ =-\dfrac{17}{4}\)
c)
\(\left(0,25+\dfrac{7}{9}-\dfrac{1}{7}\right)-\left(0,75-\dfrac{2}{9}-\dfrac{1}{7}\right)\\ =0,25+\dfrac{7}{9}-\dfrac{1}{7}-0,75+\dfrac{2}{9}+\dfrac{1}{7}\\ =\left(0,25-0,75\right)+\left(\dfrac{7}{9}+\dfrac{2}{9}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)\\ =-\dfrac{1}{2}+\dfrac{9}{9}+0\\ =-\dfrac{1}{2}+1\\ =\dfrac{1}{2}\)
d)
\(\dfrac{\dfrac{2}{7}+\dfrac{1}{3}-\dfrac{2}{9}}{\dfrac{3}{7}+\dfrac{1}{2}-\dfrac{1}{3}}\\ =\dfrac{\dfrac{2}{7}+\dfrac{2}{6}-\dfrac{2}{9}}{\dfrac{3}{7}+\dfrac{3}{6}-\dfrac{3}{9}}\\ =\dfrac{2\left(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{9}\right)}{3\left(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{9}\right)}\\ =\dfrac{2}{3}\)