Tính giá trị biểu thức:
A= 3a - 1/3b + 1/2ab khi a=1/3; b=3/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{5}{2\cdot7}+\dfrac{16}{7\cdot9}-\dfrac{2}{9\cdot11}-\dfrac{29}{1\cdot11}\)
\(=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{11}-\dfrac{29}{11}\)
\(=\dfrac{1}{2}-\dfrac{28}{11}=\dfrac{11-56}{22}=\dfrac{-45}{22}< \dfrac{1}{3}\)
Ta có:
\(\left|x-5\right|+\left|2-4x\right|=\left|x-5\right|+\left|\dfrac{1}{2}-x\right|+3\left|\dfrac{1}{2}-x\right|\)
Mà \(\left|x-5\right|+\left|\dfrac{1}{2}-x\right|\ge\left|x-5+\dfrac{1}{2}-x\right|=\dfrac{9}{2}>4\)
\(\Rightarrow\left|x-5\right|+\left|2-4x\right|\ge4+3\left|\dfrac{1}{2}-x\right|>4>3\)
Vậy pt đã cho vô nghiệm
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC tại M
Xét ΔMAB vuông tại M và ΔMDC vuông tại M có
MA=MD
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
=>AB//DC
c: ta có: ME\(\perp\)AB
AB//CD
Do đó: ME\(\perp\)CD
mà MF\(\perp\)CD
và ME,MF có điểm chung là M
nên M,E,F thẳng hàng
Xét ΔMEB vuông tại E và ΔMFC vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)(cmt)
Do đó: ΔMEB=ΔMFC
=>ME=MF
=>M là trung điểm của EF
TH1: \(-\dfrac{1}{2}\le x\le\dfrac{5}{3}\)
\(\left(2x+1\right)+\left(5-3x\right)=6\\ =>2x+1+5-3x=6\\ =>\left(2x-3x\right)+6=6\\ =>x=0\left(tm\right)\)
TH2: \(x>\dfrac{5}{3}\)
\(\left(2x+1\right)-\left(5-3x\right)=6\\ =>2x+1-5+3x=6\\ =>2x+3x=6-1+5\\ =>5x=10\\ =>x=\dfrac{10}{5}=2\left(tm\right)\)
TH3: \(x< -\dfrac{1}{2}\)
\(-\left(2x+1\right)+\left(5-3x\right)=6\\ =>-2x-1+5-3x=6\\ =>-2x-3x+4=6\\ =>-5x=6-4=2\\ =>x=-\dfrac{2}{5}\left(ktm\right)\)
Ta có: \(\widehat{xMy'}=\widehat{x'My}\)(hai góc đối đỉnh)
mà \(\widehat{xMy'}=90^0\)
nên \(\widehat{x'My}=90^0\)
Ta có: \(\widehat{xMy'}+\widehat{x'My'}=180^0\)(hai góc kề bù)
=>\(\widehat{x'My'}=180^0-90^0=90^0\)
Ta có: \(\widehat{xMy}=\widehat{x'My'}\)(hai góc đối đỉnh)
mà \(\widehat{x'My'}=90^0\)
nên \(\widehat{xMy}=90^0\)
\(\left(-\dfrac{3}{5}\right)^2.\dfrac{5}{11}+\dfrac{9}{25}.\left(-\dfrac{16}{11}\right)\)
\(=\dfrac{9}{25}.\dfrac{5}{11}+\dfrac{9}{25}.\left(-\dfrac{16}{11}\right)\)
\(=\dfrac{9}{25}.\left[\dfrac{5}{11}+\left(-\dfrac{16}{11}\right)\right]\)
\(=\dfrac{9}{25}.\left(-1\right)\)
\(=-\dfrac{9}{25}\)
Thay a=1/3;b=3/5 vào A, ta được:
\(A=3\cdot\dfrac{1}{3}-\dfrac{1}{3}\cdot\dfrac{3}{5}+\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot\dfrac{3}{5}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{10}=\dfrac{4}{5}+\dfrac{1}{10}=\dfrac{9}{10}\)