\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
Thực hiện phép tính
p/s: nhờ mng giúp e e cần gấp trước chiều nay e cám ơn nhiềuu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-2xy+y2-xz+yz
=(x2-2xy+y2)-(xz-yz)
=(x-y)2-z(x-y)
=(x-y)(x-y-z)
HT
x2 -2xy + y2 -xz +yz
= ( x-y)2 - ( xz -yz )
= ( x -y )2 -z( x -y )
= ( x-y )( x-y-z )
* Sxl
x2 - y2 + 2yz - z2
= x2 - ( y2 -2yz + z2 )
= x2 - ( y-z )2
= ( x-y +z ) ( x+y -z)
x2 - y2 + 2yz - z2
= x2 - ( y2 - 2yz + z2 )
= x2 - ( y - z )2
= ( x -y + z )( x + y - z )
x2 - 6xy - 25z2 + 9y2
= ( x2 - 6xy + 9y2 ) - 25z2
= ( x - 3y ) 2 - ( 5z)2
= ( x -3y - 5z ) ( x -3y + 5z )
x2 - 6xy - 25z2 + 9y2
= ( x2 - 6xy + 9y2 ) - 25z2
= ( x - 3y )2 - ( 5z )2
= ( x - 3y - 5z )( x - 3y + 5z )
#TNQ
\(x^2-2xy+y^2-\left(2z\right)^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\times\left(x-y+2z\right)\)
XIN TiiCK
1, \(\left(\frac{x^2-3x}{x^2-9}-1\right):\left(\frac{9-x^2}{x^2+x-6}-\frac{x-3}{2-x}-\frac{x-2}{x+3}\right)\)ĐK : \(x\ne-3;2\)
\(=\left(\frac{x}{x+3}-1\right):\left(\frac{9-x^2+\left(x^2-9\right)-\left(x-2\right)^2}{\left(x+3\right)\left(x-2\right)}\right)\)
\(=\left(\frac{3}{x+3}\right):\left(\frac{9-x^2+x^2-9-x^2+4x-4}{\left(x+3\right)\left(x-2\right)}\right)\)
\(=\frac{3}{x+3}:\frac{-x^2+4x-4}{\left(x+3\right)\left(x-2\right)}=\frac{3}{x+3}:\frac{2-x}{x+3}=\frac{3}{2-x}\)
\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=-\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(b-a\right)}\)
\(=-\frac{-c\left(a^2-b^2\right)+ab\left(a-b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-\frac{\left(a-b\right)\left[-c\left(a+b\right)+ab+c^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{\left(a-b\right)\left(-ac-bc+ab+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-\left(a-b\right)\left[-b\left(c-a\right)+c\left(c-a\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{\left(a-b\right)\left(c-a\right)\left(-b+c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(c-a\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)