Vẽ hình giúp mình luôn nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{32}{15}:\left(\dfrac{1}{3}-5x\right)=-2\dfrac{2}{5}\)
=>\(\dfrac{32}{15}:\left(\dfrac{1}{3}-5x\right)=-\dfrac{12}{5}\)
=>\(\dfrac{1}{3}-5x=\dfrac{32}{15}:\dfrac{-12}{5}=\dfrac{32}{15}\cdot\dfrac{-5}{12}=\dfrac{-160}{180}=\dfrac{-8}{9}\)
=>\(5x=\dfrac{1}{3}+\dfrac{8}{9}=\dfrac{3}{9}+\dfrac{8}{9}=\dfrac{11}{9}\)
=>\(x=\dfrac{11}{9}:5=\dfrac{11}{45}\)
b: \(\left(2x-\dfrac{1}{3}\right)^5=\dfrac{32}{243}\)
=>\(\left(2x-\dfrac{1}{3}\right)^5=\left(\dfrac{2}{3}\right)^5\)
=>\(2x-\dfrac{1}{3}=\dfrac{2}{3}\)
=>\(2x=\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{3}{3}=1\)
=>\(x=\dfrac{1}{2}\)
c: \(\left(\dfrac{5}{6}x+3\right)^2=\dfrac{4}{9}\)
=>\(\left[{}\begin{matrix}\dfrac{5}{6}x+3=\dfrac{2}{3}\\\dfrac{5}{6}x+3=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{6}x=\dfrac{2}{3}-3=-\dfrac{7}{3}\\\dfrac{5}{6}x=-\dfrac{2}{3}-3=-\dfrac{11}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{7}{3}:\dfrac{5}{6}=-\dfrac{7}{3}\cdot\dfrac{6}{5}=\dfrac{-14}{5}\\x=-\dfrac{11}{3}:\dfrac{5}{6}=-\dfrac{11}{3}\cdot\dfrac{6}{5}=\dfrac{-22}{5}\end{matrix}\right.\)
a)
\(\dfrac{32}{15}:\left(\dfrac{1}{3}-5x\right)=-2\dfrac{2}{5}\\ \dfrac{32}{15}:\left(\dfrac{1}{3}-5x\right)=-\dfrac{8}{5}\\ \dfrac{1}{3}-5x=\dfrac{32}{15}:-\dfrac{8}{5}\\ \dfrac{1}{3}-5x=\dfrac{-4}{3}\\ 5x=\dfrac{1}{3}+\dfrac{4}{3}\\ 5x=\dfrac{5}{3}\\ x=\dfrac{5}{3}:5\\ x=\dfrac{1}{3}\)
b) \(\left(2x-\dfrac{1}{3}\right)^5=\dfrac{32}{243}\)
\(\left(2x-\dfrac{1}{3}\right)^5=\left(\dfrac{2}{3}\right)^5\)
\(2x-\dfrac{1}{3}=\dfrac{2}{3}\)
\(2x=\dfrac{2}{3}+\dfrac{1}{3}\)
\(2x=1\\ x=\dfrac{1}{2}\)
c) \(\left(\dfrac{5}{6}x+3\right)^2=\dfrac{4}{9}\)
\(\left(\dfrac{5}{6}x+3\right)^2=\left(\dfrac{2}{3}\right)^2\)
TH1:
\(\dfrac{5}{6}x+3=\dfrac{2}{3}\\ \dfrac{5}{6}x=\dfrac{2}{3}-3\\ \dfrac{5}{6}x=-\dfrac{7}{3}\\ x=\dfrac{-7}{3}:\dfrac{5}{6}=-\dfrac{14}{5}\)
TH2:
\(\dfrac{5}{6}x+3=-\dfrac{2}{3}\\ \dfrac{5}{6}x=-\dfrac{2}{3}-3\\ \dfrac{5}{6}x=-\dfrac{11}{3}\\ x=-\dfrac{11}{3}:\dfrac{5}{6}\\ x=-\dfrac{22}{5}\)
\(2\left(x+1\dfrac{1}{3}\right)=\left(\dfrac{-1}{2}\right)^2\cdot\dfrac{2}{3}\\ 2\left(x+\dfrac{4}{3}\right)=\dfrac{1}{4}\cdot\dfrac{2}{3}\\ 2\left(x+\dfrac{4}{3}\right)=\dfrac{1}{6}\\ x+\dfrac{4}{3}=\dfrac{1}{6}:2\\ x+\dfrac{4}{3}=\dfrac{1}{12}\\ x=\dfrac{1}{12}-\dfrac{4}{3}\\ x=-\dfrac{15}{12}=\dfrac{-5}{4}\)
\(2\left(x+1\dfrac{1}{3}\right)=\left(-\dfrac{1}{2}\right)^2\cdot\dfrac{2}{3}\)
=>\(2\left(x+\dfrac{4}{3}\right)=\dfrac{1}{4}\cdot\dfrac{2}{3}=\dfrac{1}{6}\)
=>\(x+\dfrac{4}{3}=\dfrac{1}{12}\)
=>\(x=\dfrac{1}{12}-\dfrac{4}{3}=\dfrac{1}{12}-\dfrac{16}{12}=-\dfrac{15}{12}=-\dfrac{5}{4}\)
\(\left(-\dfrac{3}{5}\right)^2-\left(x-\dfrac{1}{3}\right)=\dfrac{4}{25}\)
=>\(\dfrac{9}{25}-\left(x-\dfrac{1}{3}\right)=\dfrac{4}{25}\)
=>\(x-\dfrac{1}{3}=\dfrac{9}{25}-\dfrac{4}{25}=\dfrac{5}{25}=\dfrac{1}{5}\)
=>\(x=\dfrac{1}{5}+\dfrac{1}{3}=\dfrac{8}{15}\)
`x- \left(\frac54-\frac75 \right)=\frac{9}{20}`
`\Rightarrow x-\frac{-3}{20}=\frac{9}{20}`
`\Rightarrow x=\frac{9}{20}+\frac{-3}{20}`
`\Rightarrow x=\frac{3}{10}`
\(x-\left(\dfrac{5}{4}-\dfrac{7}{5}\right)=\dfrac{9}{20}\)
=>\(x-\dfrac{25-28}{20}=\dfrac{9}{20}\)
=>\(x+\dfrac{3}{20}=\dfrac{9}{20}\)
=>\(x=\dfrac{9}{20}-\dfrac{3}{20}=\dfrac{6}{20}=\dfrac{3}{10}\)
a: \(-0,7< \dfrac{-13}{19}< -0,6\)
\(\dfrac{19}{-23}< -0,8\)
mà -0,8<-0,7
nên \(\dfrac{19}{-23}< -\dfrac{13}{19}\)
b: \(\dfrac{1}{83}:\dfrac{6}{331}=\dfrac{1}{83}\cdot\dfrac{331}{6}=\dfrac{331}{498}< 1\)
=>\(\dfrac{1}{83}< \dfrac{6}{331}\)
=>\(\dfrac{1}{83}+1< \dfrac{6}{331}+1\)
=>\(\dfrac{84}{83}< \dfrac{337}{331}\)
=>\(\dfrac{84}{-83}>\dfrac{-337}{331}\)
\(\dfrac{7}{5}-\left(\dfrac{2}{5}-x\right)=-\dfrac{3}{10}\)
=>\(\dfrac{7}{5}-\dfrac{2}{5}+x=-\dfrac{3}{10}\)
=>\(x+1=-\dfrac{3}{10}\)
=>\(x=-\dfrac{3}{10}-1=-\dfrac{13}{10}\)
\(\dfrac{7}{5}\) - (\(\dfrac{2}{5}\) - \(x\)) = \(\dfrac{-3}{10}\)
\(\dfrac{2}{5}\) - \(x\) = \(\dfrac{7}{5}\) - \(\dfrac{-3}{10}\)
\(\dfrac{2}{5}\) - \(x\) = \(\dfrac{14}{10}\) + \(\dfrac{3}{10}\)
\(\dfrac{2}{5}\) - \(x\) = \(\dfrac{17}{10}\)
\(x\) = \(\dfrac{2}{5}\) - \(\dfrac{17}{10}\)
\(x\) = \(\dfrac{4}{10}\) - \(\dfrac{17}{10}\)
\(x\) = \(\dfrac{-13}{10}\)
Vậy \(x=-\dfrac{13}{10}\)
Gọi mẫu số của các phân số cần tìm là x
(Điều kiện: \(x\ne0\))
Theo đề, ta có: \(\dfrac{-3}{5}< \dfrac{9}{x}< \dfrac{-4}{9}\)
=>\(\dfrac{-36}{60}< \dfrac{-36}{-4x}< \dfrac{-36}{81}\)
=>\(\dfrac{36}{60}>\dfrac{36}{-4x}>\dfrac{36}{81}\)
=>60<-4x<81
=>-15>x>-20,25
=>-20,25<x<-15
Vậy: Các phân số cần tìm có dạng là \(\dfrac{9}{x}\), với điều kiện là -20,25<x<-15
a: Xét ΔBMD và ΔCMA có
MB=MC
\(\widehat{BMD}=\widehat{CMA}\)(hai góc đối đỉnh)
MD=MA
Do đó: ΔBMD=ΔCMA
=>\(\widehat{MBD}=\widehat{MCA}\)
=>BD//AC
=>\(\widehat{ABD}+\widehat{BAC}=180^0\)
mà \(\widehat{BAC}+\widehat{B'A'C'}=180^0\)
nên \(\widehat{ABD}=\widehat{B'A'C'}\)
b: ΔBMD=ΔCMA
=>BD=CA
mà CA=A'C'
nên BD=A'C'
Xét ΔABD và ΔB'A'C' có
AB=B'A'
\(\widehat{ABD}=\widehat{B'A'C'}\)
BD=A'C'
Do đó: ΔABD=ΔB'A'C'
=>AD=B'C'
mà \(AM=\dfrac{1}{2}AD\)
nên \(AM=\dfrac{1}{2}B'C'\)