Cho x,y là các số hữu tỉ thoả mãn: x\(\sqrt{2}\)+ y\(\sqrt{3}\)= 0
Cmr: x = y = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài có chút nhầm lẫn, hình như góc ngoài đỉnh D = 115º?
+ Góc ngoài đỉnh B = 75º (gt) => góc B = 180º - 75º = 105º
+ Góc ngoài đỉnh D = 115º (gt) => góc D = 180º - 115º = 65º
+ Tứ giác ABCD có:
góc A + góc B + góc C + góc D = 360º
=> 90º + 105º + góc C + 65º = 360º
=> góc C + 260º = 360º
=> góc C = 100º
Vậy, góc C = 100º
-2x2 - 3x + 5
\(=-2\left(x^2-\frac{3}{2}x+\frac{5}{2}\right)=-2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{31}{16}\right)\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\)
Có: \(\left(x-\frac{3}{4}\right)^2\ge0,\forall x\)
\(\Rightarrow-2\left(x-\frac{3}{4}\right)^2\le0,\forall x\)\(\Rightarrow-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8},\forall x\)
\(\Rightarrow-2x^2-3x+5\le-\frac{31}{8},\forall x\)
\(\text{Dấu "=" xảy ra }\Leftrightarrow\left(x-\frac{3}{4}\right)^2=0\)
\(\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
\(\Rightarrow-2x^2-3x+5\text{ đạt max}\text{ }\Leftrightarrow\text{ }x=\frac{3}{4}\)
Vậy, ...
Đặt \(y=\sqrt{x^2+7}+\sqrt{x^3+9}\)
\(\Leftrightarrow y-\sqrt{x^2+7}=\sqrt{x^3+9}\)
\(\Leftrightarrow\left(y-\sqrt{x^2+7}\right)^2=x^3+9\)
\(\Leftrightarrow y^2-2y\sqrt{x^2+7}+x^2+7=x^3+9\)
\(\Leftrightarrow y^2+x^2-x^3-2=2y\sqrt{x^2+7}\)
Ta thấy VT là số nguyên nên VP cũng phải là số nguyên
\(\Rightarrow x^2+7\)phải là số chính phương
Đặt \(x^2+7=z^2\)với z là số nguyên dương và z > x
\(\Leftrightarrow\left(z+x\right)\left(z-x\right)=7\)
Tới đây làm nốt nha
ta có :
\(x^2+0,25-x=x^2-2.\frac{1}{2}.x+\frac{1}{2^2}=\left(x-\frac{1}{2}\right)^2\)
\(A=x^2-4x+7=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\forall x\)
Vậy ta có đpcm
\(B=4x^2-12x+11=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\forall x\)
Vậy ta có đpcm
\(C=x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy ta có đpcm
\(\hept{\begin{cases}A=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\\B=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\\C=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)
Dễ thấy phương trình có nghiệm tầm thường là x = y = 0.
Tìm nghiệm khác 0. Đặt:
\(x=\frac{m}{n};y=\frac{-k}{l}\)(m, n, l, k khác 0)
\(\sqrt{\frac{3}{2}}=\frac{m.l}{n.k}\)
Vế trái là số vô tỷ. Do đó không có bất kỳ m, n, l, k nào thỏa mãn vì vế phải luôn luôn là số hữu tỷ.
Vậy phương trình có 1 nghiệm x = y = 0