Câu 7 (3,0 điểm). Nhà bạn Sơn có mảnh đất hình thang, phía sau (đáy lớn) 18m, phía trước (đáy bé) bằng 2/3 đáy lớn, chiều cao bằng trung bình cộng hai đáy.
a) Em hãy tính diện tích mảnh đất nhà bạn Sơn?
b) Nhà Sơn trồng hoa trên mảnh đất đó, biết trung bình cứ 15m2 đất thu hoạch được 180 000đ. Hỏi trên cả mảnh đất, nhà bạn Sơn thu hoạch được bao nhiêu tiền?
c) Dọc theo phía sau (đáy lớn), Sơn dành một mảnh đất hình thang để trồng hoa, có chiều cao 1m và đáy lớn trùng với đáy lớn ở trên. Em hãy tính diện tích mảnh đất mà bạn Sơn dành lại để trồng hoa?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
45,98:0,01 *4,2-6,27:0,5+3,9
=4,598*4,2-12,54+3,9
=19,3116-12,54+3,9
=6,7716+3,9
=10,6716
zui
zẻ
zé
A = 45,98 : 0,01 x 4,2 - 6,27 : 0,5 + 3,9
A = 4598 x 4,2 - 6,27 : 0,5 + 3,9
A = 19311,6 - 6,27 : 0,5 + 3,9
A = 19311,6 - 12,54 + 3,9
A = 19299,04 + 3,9
A = 19302,94
Thể tích của bể nước là:
\(12\times3\times20=720\) \(\left(m^3\right)\)
Nếu mặt nước trong bể cách miệng bể 0,6m thì thể tích nước trong bể là:
\(\left(3-0,6\right)\times12\times20=576\left(m^3\right)\)
Đủ dùng cho số ngày là:
\(576\div64=9\) ( ngày )
Vậy thể tích bể là \(720m^3\) và nếu mực nước cách miệng bể 0,6m thì đủ dùng trong 9 ngày
Tick hộ mình với bạn^^
Thể tích của bể nước là:
Nếu mặt nước trong bể cách miệng bể 0,6m thì thể tích nước trong bể là:
Đủ dùng cho số ngày là:
( ngày )
Vậy thể tích bể là và nếu mực nước cách miệng bể 0,6m thì đủ dùng trong 9 ngày
6 giờ 20 phút / 4 = 6 giờ 20 phút : 4 = 1 giờ 35 phút
Gọi pt chính tắc của elip cần tìm là \(\left(E\right):\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\). Do (E) đi qua \(\left(2;2\sqrt{6}\right)\) nên \(\dfrac{4}{a^2}+\dfrac{24}{b^2}=1\). Đồng thời (E) đi qua \(N\left(4;-\sqrt{15}\right)\) nên \(\dfrac{16}{a^2}+\dfrac{15}{b^2}=1\). Ta có hệ pt: \(\left\{{}\begin{matrix}\dfrac{4}{a^2}+\dfrac{24}{b^2}=1\\\dfrac{16}{a^2}+\dfrac{15}{b^2}=1\end{matrix}\right.\) . (I)
Đặt \(\dfrac{1}{a^2}=u\) và \(\dfrac{1}{b^2}=v\) \(\left(u,v>0\right)\). Khi đó hệ (I) trở thành \(\left\{{}\begin{matrix}4u+24v=1\\16u+15v=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{36}\\v=\dfrac{1}{27}\end{matrix}\right.\) (nhận) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a^2}=\dfrac{1}{36}\\\dfrac{1}{b^2}=\dfrac{1}{27}\end{matrix}\right.\)
Vậy pt chính tắc của elip cần tìm là \(\left(E\right):\dfrac{x^2}{36}+\dfrac{y^2}{27}=1\)
Khi đó \(c=\sqrt{a^2-b^2}=\sqrt{36-27}=3\) nên tọa độ các tiêu điểm của *(E) là \(F_1\left(-3;0\right);F_2\left(3;0\right)\) . Tâm sai của (E) là \(e=\dfrac{c}{a}=\dfrac{3}{6}=\dfrac{1}{2}\)
Gọi M(x,y)
Trong (E) có : \(c=\sqrt{a^2-b^2}=\sqrt{5}\)
Từ đó ta có : \(F_1\left(\sqrt{5};0\right);F_2\left(-\sqrt{5};0\right)\); \(F_1F_2=2\sqrt{5}\)
=> \(\overrightarrow{F_1M}\left(x-\sqrt{5};y\right)\Rightarrow F_1M^2=\left(x-\sqrt{5}\right)^2+y^2\)
tương tự \(F_2M^2=\left(x+\sqrt{5}\right)^2+y^2\)
Do \(\widehat{F_1MF_2}=90^{\text{o}}\) nên tam giác F1MF2 vuông tại M
=> F1M2 + F2M2 = F1F22
<=> \(\left(x-\sqrt{5}\right)^2+y^2+\left(x+\sqrt{5}\right)^2+y^2=20\)
\(\Leftrightarrow x^2+y^2=5\)
Lại có \(M\in\left(E\right)\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)
từ đó ta có hệ \(\left\{{}\begin{matrix}x^2+y^2=5\\\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\dfrac{9}{5}\\y^2=\dfrac{16}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{3\sqrt{5}}{5}\\y=\pm\dfrac{4\sqrt{5}}{5}\end{matrix}\right.\)
Theo đề ra ta có hệ :
\(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy (a,b) = (2,1)
?????!!!!!!