Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDME vuông tại M và ΔDNF vuông tại N có
\(\widehat{MDE}=\widehat{NDF}\)
Do đó: ΔDME~ΔDNF
b: ΔDME~ΔDNF
=>\(\dfrac{DM}{DN}=\dfrac{ME}{NF}\)
Bài 3:
Gọi số sách ban đầu ở thư viện 1 là x(cuốn)
(Điều kiện: \(x\in Z^+\))
Số sách ban đầu ở thư viện 2 là 15000-x(cuốn)
Số sách ở thư viện 1 sau khi chuyển đi 3000 cuốn là:
x-3000(cuốn)
Số sách ở thư viện 2 sau khi có thêm 3000 cuốn là:
15000-x+3000=18000-x(cuốn)
Theo đề, ta có:
x-3000=18000-x
=>2x=21000
=>x=10500(nhận)
vậy: Số sách ban đầu ở thư viện 1 là 10500 cuốn
số sách ban đầu ở thư viện 2 là 15000-10500=4500 cuốn
Bài 1:
Gọi chiều dài và chiều rộng mảnh đất lần lượt là $a$ và $b$ (m). ĐK: $a> b>0$
Theo bài ra ta có:
$a+b=100:2=50$
$(a+10)(b-5)=ab$
$\Leftrightarrow -5a+10b-50=0$
$\Leftrightarrow -a+2b=10$
$\Leftrightarrow a=2b-10$
Thay vào điều kiện $a+b=50$ thì:
$2b-10+b=50$
$3b-10=50$
$3b=60$
$b=20$ (m)
$a=50-b=50-20=30$ (m)
Bài 2:
Nửa chu vi hcn: $62:2=31$ (m)
Chiều dài hcn: $(31+7):2=19$ (m)
Chiều rộng hcn: $(31-7):2=12$ (m)
Diện tích hcn: $19.12=228$ (m2)
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH~ΔCBA
=>\(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)
=>\(AB^2=BH\cdot BC\)
b: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAHB
=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)
=>\(AH^2=AE\cdot AB\left(1\right)\)
Xét ΔAFH vuông tại F và ΔAHC vuông tại H có
\(\widehat{FAH}\) chung
DO đó: ΔAFH~ΔAHC
=>\(\dfrac{AF}{AH}=\dfrac{AH}{AC}\)
=>\(AH^2=AF\cdot AC\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
c: \(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF~ΔACB
a: Xét ΔMAN vuông tại A và ΔMBP vuông tại B có
\(\widehat{AMN}\) chung
Do đó: ΔMAN~ΔMBP
b: Xét ΔHBN vuông tại B và ΔHAP vuông tại A có
\(\widehat{BHN}=\widehat{AHP}\)(hai góc đối đỉnh)
Do đó; ΔHBN~ΔHAP
=>\(\dfrac{HB}{HA}=\dfrac{HN}{HP}\)
=>\(HB\cdot HP=HA\cdot HN\)
c: Ta có: NA\(\perp\)MP
PI\(\perp\)MP
Do đó: NA//PI
=>NH//PI
ta có: PH\(\perp\)MN
NI\(\perp\)MN
Do đó: PH//NI
Xét tứ giác NHPI có
NH//PI
HP//NI
Do đó: NHPI là hình bình hành
=>NP cắt HI tại trung điểm của mỗi đường
mà K là trung điẻm của NP
nên K là trung điểm của HI
=>H,K,I thẳng hàng
Lời giải:
a.
Xét tam giác $ANC$ và $AMB$ có:
$\widehat{A}$ chung
$\widehat{ANC}=\widehat{AMB}=90^0$
$\Rightarrow \triangle ANC\sim \triangle AMB$ (g.g)
$\Rightarrow \frac{AN}{AM}=\frac{AC}{AB}$
Xét tam giác $AMN$ và $ABC$ có:
$\widehat{A}$ chung
$\frac{AN}{AM}=\frac{AC}{AB}$ (cmt)
$\Rightarrow \triangle AMN\sim \triangle ABC$ (c.g.c)
b.
Từ phần a thì $\frac{AN}{AM}=\frac{AC}{AB}\Rightrrow \frac{AM}{AN}=\frac{AB}{AC}(1)$
Áp dụng tính chất đường phân giác ta có:
$\frac{IM}{IN}=\frac{AM}{AN}(2)$
$\frac{KB}{KC}=\frac{AB}{AC}(3)$
Từ $(1); (2); (3)\Rightarrow \frac{IM}{IN}=\frac{KB}{KC}$
a: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
nên AIHK là hình chữ nhật
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔAHB~ΔCHA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
c: Ta có: AIHK là hình chữ nhật
=>\(\widehat{AIK}=\widehat{AHK}\)
mà \(\widehat{AHK}=\widehat{C}\left(=90^0-\widehat{CAH}\right)\)
nên \(\widehat{AIK}=\widehat{ACB}\)
Xét ΔAIK vuông tại A và ΔACB vuông tại A có
\(\widehat{AIK}=\widehat{ACB}\)
Do đó: ΔAIK~ΔACB
d: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
\(\widehat{AKI}+\widehat{MAC}=\widehat{MCA}+\widehat{B}=90^0\)
=>AM\(\perp\)IK tại D
1) Gọi x (nghìn đồng) là giá niêm yết của áo kiểu A (x > 0)
Giá niêm yết áo kiểu B là: 900 - x (nghìn đồng)
Giá sau khi giảm của áo kiểu A: x - x.25% = 0,75x (nghìn đồng)
Giá sau khi giảm của áo kiểu B là:
900 - x - (900 - x).40% = (900 - x).0,6 = 540 - 0,6x (nghìn đồng)
Theo đề bài, ta có phương trình:
0,75x + 540 - 0,6x = 615
0,15x = 615 - 540
0,15x = 75
x = 75 : 0,15
x = 500 (nhận)
Vậy giá niêm yết của áo kiểu A là 500 nghìn đồng, giá niêm yết của áo kiểu B là 900 - 500 = 400 nghìn đồng
2) Diện tích xung quanh của chiếc hộp:
10 . 4 : 2 . 8 = 160 (cm²)