Giải phương trình \(\sin^2x=\cos^22x+\cos^23x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có hai lí do giải thích cho dòng đó nha bạn:
- Do hàm \(cos\)tuần hoàn với chu kì \(2\pi\).
- Tìm chu kì của hàm \(cos\left(4x-\frac{\pi}{6}\right)\)sẽ là giá trị \(T\)dương nhỏ nhất sao cho \(cos\left(4\left(x+T\right)-\frac{\pi}{6}\right)=cos\left(4x-\frac{\pi}{6}\right)\).
Ta có:
3n = Ba n = Bố N = Bốn = 4 .....
Vậy 3n = 4 ( với mọi n )
~ Hk T ~
ĐK: \(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi,k\inℤ\).
\(1+tanx=2\left(sinx+cosx\right)\)
\(\Leftrightarrow cosx+sinx=2cosx\left(sinx+cosx\right)\)
\(\Leftrightarrow\orbr{\begin{cases}sinx+cosx=0\\cosx=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=cos\left(-x-\frac{\pi}{2}\right)\\cosx=cos\frac{\pi}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm\left(-x-\frac{\pi}{2}\right)+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-\pi}{4}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)(thỏa mãn)
\(1+\tan x=2\left(\sin x+\cos x\right)\)
Bạn áp dụng đẳng thức lượng giác nhé :
\(\frac{\sin x+\cos x}{\cos x}=2\sin x+2\cos x\)
Biệt thức :
\(D=b^2-4ac\)
\(\Leftrightarrow\left(-1\right)^2-4\left(1.1\right)=-3\)
Phương trình không có nghiệm thực :
\(D< 0\)
Nghiệm tuần hoàn :
\(2\pi k-\frac{\pi}{4}\)
\(2\pi k+\frac{3\pi}{4}\)
\(2\pi k+\frac{\pi}{3}\)
\(2\pi k-\frac{\pi}{3}\)
Ps : không hiểu chỗ nào thì bạn hỏi mình nhé, nhớ k :33
# Aeri #
\(sin^2x=cos^22x+cos^33x\)
\(\Leftrightarrow1-cos^2x=2cos^2x-1+4cos^3x-3cosx\)
\(\Leftrightarrow4cos^3x+3cos^2x-3cosx-2=0\)
\(\Leftrightarrow\left(cosx+1\right)\left(4cos^2-cosx-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=-1\\cosx=\frac{1\pm\sqrt{33}}{8}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pi+k2\pi\\x=\pm arccos\left(\frac{1\pm\sqrt{33}}{8}\right)+k2\pi\end{cases}}\left(k\inℤ\right)\)