Bài 4: Tìm x, biết:
b) \(\left(x-\dfrac{1}{3}\right)^3=\dfrac{-8}{27}\)
c) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
d) \(\left(\dfrac{1}{3}-\dfrac{3}{2}.x\right)^2=2\dfrac{1}{4}\)
e) \(\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
g)\(\left(\dfrac{1}{3}\right)^{x+1}+\left(\dfrac{1}{3}\right)^{x+2}=\dfrac{1}{12}\)
b: \(\left(x-\dfrac{1}{3}\right)^3=-\dfrac{8}{27}\)
=>\(\left(x-\dfrac{1}{3}\right)^3=\left(-\dfrac{2}{3}\right)^3\)
=>\(x-\dfrac{1}{3}=-\dfrac{2}{3}\)
=>\(x=-\dfrac{2}{3}+\dfrac{1}{3}=-\dfrac{1}{3}\)
c: \(\left(5x+1\right)^2=\dfrac{36}{49}\)
=>\(\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{6}{7}-1=-\dfrac{1}{7}\\5x=-\dfrac{6}{7}-1=-\dfrac{13}{7}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{7}:5=-\dfrac{1}{35}\\x=-\dfrac{13}{7}:5=-\dfrac{13}{35}\end{matrix}\right.\)
d: \(\left(\dfrac{1}{3}-\dfrac{3}{2}x\right)^2=2\dfrac{1}{4}\)
=>\(\left(\dfrac{3}{2}x-\dfrac{1}{3}\right)^2=\dfrac{9}{4}\)
=>\(\left[{}\begin{matrix}\dfrac{3}{2}x-\dfrac{1}{3}=\dfrac{3}{2}\\\dfrac{3}{2}x-\dfrac{1}{3}=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{2}x=\dfrac{3}{2}+\dfrac{1}{3}=\dfrac{11}{6}\\\dfrac{3}{2}x=-\dfrac{3}{2}+\dfrac{1}{3}=-\dfrac{7}{6}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{11}{6}:\dfrac{3}{2}=\dfrac{11}{6}\cdot\dfrac{2}{3}=\dfrac{11}{9}\\x=-\dfrac{7}{6}:\dfrac{3}{2}=-\dfrac{7}{6}\cdot\dfrac{2}{3}=-\dfrac{7}{9}\end{matrix}\right.\)
e: \(\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
=>\(\left(\dfrac{4}{5}\right)^{2x+5}=\left(\dfrac{4}{5}\right)^4\)
=>2x+5=4
=>2x=4-5=-1
=>\(x=-\dfrac{1}{2}\)
g: \(\left(\dfrac{1}{3}\right)^{x+1}+\left(\dfrac{1}{3}\right)^{x+2}=\dfrac{1}{12}\)
=>\(\left(\dfrac{1}{3}\right)^x\cdot\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^x\cdot\dfrac{1}{9}=\dfrac{1}{12}\)
=>\(\left(\dfrac{1}{3}\right)^x\left(\dfrac{1}{3}+\dfrac{1}{9}\right)=\dfrac{1}{12}\)
=>\(\left(\dfrac{1}{3}\right)^x=\dfrac{1}{12}:\dfrac{4}{9}=\dfrac{1}{12}\cdot\dfrac{9}{4}=\dfrac{3}{4\cdot4}=\dfrac{3}{16}\)
=>\(x=log_{\dfrac{1}{3}}\left(\dfrac{3}{16}\right)\)
Mọi người giúp mk bài này với!