Chào mn
Nhờ mn giúp mình tí nhé
Ai có linked về Đề Toán 8thi HSG thì cho mình xin vs
Hoặc các bạn có 1 số đề toán thường thi vào thì cho mình xin nhóe.. Camon nhìu
♥♥♥♥♥♥ ≧◔◡◔≦ ♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Nội suy đa thức, nhỉ?)
Để giải dạng bài này anh thường làm như sau:
Bước 1: Tìm coi \(P\left(x\right)\) có giả thiết gì rồi.
Qua các giả thiết đề cho ta biết được \(P\left(-2\right)=0\), \(P\left(1\right)=6\) và \(P\left(-1\right)=4\).
-----
Bước 2: Nội suy.
Viết \(P\left(x\right)\) dưới dạng \(a\left(x+2\right)+b\left(x+2\right)\left(x+1\right)+c\left(x+2\right)\left(x+1\right)\left(x-1\right)+d\).
Ta có \(P\left(-2\right)=d=0\).
Lại có \(P\left(-1\right)=a+d=4\Rightarrow a=4\)
Lại có \(P\left(1\right)=3a+6b+d=6\Rightarrow b=-1\).
Vậy đa thức \(P\left(x\right)=c\left(x+2\right)\left(x+1\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+4\left(x+2\right)\) với \(c\) tuỳ ý
Ta co : x+y=2
(x+y)^2=4
x^2+2xy+y^2=4
x^2+y^2+2xy=4
10+2xy=4
2xy=-6
xy=-3
Ta lai co : x^3+y^3 =(x+y)(x^2+xy+y^2)
=(x+y)(x^2+y^2-xy)
=2.[10-(-3)]
=26
Bạn tự vẽ hình nha.
Tam giác ABC coa AB=AC=>ABC là tam giác cân tại A(ĐN)
Xét \(\Delta BCK\left(\widehat{K}=90^0\right)\) và \(\Delta CBH\left(\widehat{H}=90^0\right)\) có:
BC -chung
\(\widehat{B}=\widehat{C}\) (hai góc ở đáy của tam giác cân)
=>\(\Delta BCK=\Delta CBH\)(cạnh huyền góc nhọn) (1)
Từ (1)=>\(\widehat{HBC}=\widehat{KCB}\)mà \(\widehat{B}=\widehat{C}\) (chứng minh trên)=>Trừ vế với vế ta có :\(\widehat{ABH}=\widehat{ACK}\)
Từ (1) =>CK=BH(hai cạnh tương ứng của hai tam giác bằng nhau)
Xét \(\Delta AKC\left(\widehat{K=90^0}\right)và\Delta AHB\left(\widehat{H}=90^0\right)\) có :
\(\widehat{ABH}=\widehat{ACK}\) (chứng minh trên)
Góc A chung
=>\(\Delta AKC=\Delta AHB\)(cạnh góc vuông-góc nhọn)
=>AH=Ak(2 cạnh tương ứng của 2 tam giác bằng nhau) (ĐPCM)
http://vndoc.com/7-bo-de-thi-hoc-sinh-gioi-tinh-toan-lop-8/download
tk em nha !!! ^ ^
Nguyễn Thị Hương Trà nè !
Mình có tìm thử thì có đề của năm 2013 bạn có thể tham khảo
Tại đây : http://nslide.com/download/de-thi-de-toan-hsg8-pt0jzq