Hai địa điểm A và B cách nhau 30 km. Cùng lúc, một người đi xe máy khởi hành từ A, một người đi xe đạp khởi hành từ B. Nếu đi ngược chiều thì sau 40 phút họ gặp nhau. Nếu đi cùng chiều theo hướng từ A đến B thì sau 2 giờ họ gặp nhau tại địa điểm C (B ở giữa A và C). Tính vận tốc mỗi xe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G/s điểm cố định đó là \(\left(x_0;y_0\right)\) nên khi đó:
\(y_0=\left(m-2\right)x_0+2\) (với mọi m)
\(\Leftrightarrow mx_0-2x_0+2-y_0=0\) (với mọi m)
\(\Leftrightarrow mx_0-\left(2x_0+y_0-2\right)=0\) (với mọi m)
\(\Rightarrow\hept{\begin{cases}x_0=0\\2x_0+y_0-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x_0=0\\y_0=2\end{cases}}\)
=> đcđ đó là (0;2)
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)
Theo đề bài:
\(a+b+3ab=1\)
\(\Leftrightarrow4\left(a+b\right)+12ab=4\)
\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)
\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)
\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)
\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)
\(\Leftrightarrow a+b\ge\frac{2}{3}\)
`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)
Áp dụng các kết quả trên, ta có:
\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)
\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)
Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)
\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)
Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)
\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)
\(=\frac{3\sqrt{x}+1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)
\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\) ĐK : \(x\ge0;x\ne1\)
\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2}{\sqrt{x}+3}\)
\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)
\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}-\frac{2}{\sqrt{x}+3}\)
\(=\frac{3\sqrt{x}+1-2\cdot\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}-1}\)
\(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)
\(=\left|\sqrt{3}-1\right|-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
\(\sqrt{11+2\sqrt{18}}=\sqrt{11+2\sqrt{9.2}}\)
\(=\sqrt{\left(\sqrt{9}\right)^2+2\sqrt{9.2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{9}+\sqrt{2}\right)^2}=\left|\sqrt{9}+\sqrt{2}\right|=\sqrt{9}+\sqrt{2}\)
Ta có: \(P=-\left(b\sqrt{a}-2a\sqrt{b}+a\sqrt{a}\right)+a\sqrt{a}=-\left(\sqrt{b+\sqrt{a}}-\sqrt{a+\sqrt{a}}\right)^2+a\sqrt{a}\)
\(\le a\sqrt{a}\le1\)
Dấu "=" xảy ra khi a=b=1
Mình làm thế này không biết có đúng ko mn
\(\left(P\right):y=x^2\)
\(d:y=\left(2-2m\right)x+m\)
+) Xét phương trình: \(x^2+\left(2m-2\right)x-m=0\left(1\right)\)có \(\Delta'=m^2-m+1>0\forall m\)
Vậy d luôn cắt (P) tại A,B phân biệt.
+) Giả sử \(x_1,x_2\)là hai nghiệm của (1), ta có: \(A\left(x_1;y_1\right),B\left(x_2;y_2\right)\)hay \(A\left(x_1;x_1^2\right),B\left(x_2;x_2^2\right)\)
Vì \(M\left(\frac{1}{2};1\right)\) là trung điểm AB nên \(\hept{\begin{cases}x_1+x_2=1\\\frac{x_1^2+x_2^2}{2}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1+x_2=1\\1-2x_1x_2=2\end{cases}}\)(I)
Theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2-2m\\x_1x_2=-m\end{cases}}\)(II)
Từ (I),(II) suy ra \(\hept{\begin{cases}2-2m=1\\1+2m=2\end{cases}}\Leftrightarrow m=\frac{1}{2}\)
Như vậy \(KH=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(2-2m\right)^2-4\left(-m\right)}=\sqrt{3}.\)
cô-si ngược auto ra @-@
Từ giả thiết ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\frac{1}{x}=A;\frac{1}{y}=N;\frac{1}{z}=H\)khi đó : \(A+N+H=1\)
Ta có : \(H.=\frac{H}{9A^2+1}+\frac{A}{9N^2+1}+\frac{N}{9H^2+1}\)
Theo bđt cô si ta có đánh giá sau :
\(\frac{H}{9A^2+1}=\frac{H\left(9A^2+1\right)-9HA^2}{9A^2+1}=H-\frac{HA^2}{9A^2+1}\ge H-\frac{3}{2}AH\)
Tương tự và cộng theo vế ta được :
\(H=A+N+H-\frac{3}{2}\left(AN+NH+HA\right)=1-\frac{3}{2}\left(AN+NH+HA\right)\)
Áp dụng bđt phụ \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)có:
\(1-\frac{3}{2}\left(AN+NH+HA\right)\ge1-\frac{\frac{3}{2}\left(A+N+H\right)^2}{3}=1-\frac{\frac{3}{2}}{3}=\frac{1}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(A=N=H=\frac{1}{3}\)\(< =>x=y=z=\frac{1}{3}\)
=))
Gọi vận tốc của xe máy là x (km/h), xe đạp y (km/h) (x,y>0)
40 phút = \(\frac{2}{3}\)giờ
Quãng đường xe máy đi là \(\frac{2}{3}\times x\)
Quãng đường xe đạp đi là \(\frac{2}{3}\times y\)
Vì họ gặp nhau nếu đi ngược chiều nên:
\(\frac{2}{3}\times x+\frac{2}{3}\times y=30\)
\(\Rightarrow x+y=45\left(1\right)\)
Nếu đi cùng chiều thì sau 2h xe máy đuổi kịp xe đạp nên ta có:
\(2x-2y=AB=30\)
\(\Rightarrow x-y=15\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x+y=45\\x-y=15\end{cases}\Rightarrow\hept{\begin{cases}x=30\\y=15\end{cases}}}\)
Vậy vận tốc mỗi xe là 30 km/h và 15 km/h