giải phương trình
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(B=\frac{\sqrt{x}-4}{x-2\sqrt{x}}+\frac{3}{\sqrt{x}-2}=\frac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\frac{B}{A}\Rightarrow P=\frac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{4}=1-\sqrt{x}\)
b, Ta có : \(M=P.\frac{1-\sqrt{x}}{\sqrt{x}-3}\Rightarrow M=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-3}\ge0\)
\(\Rightarrow\sqrt{x}-3\ge0\Leftrightarrow\sqrt{x}\ge3\Leftrightarrow x\ge9\)vì \(\left(\sqrt{x}-1\right)^2\ge0\)
a, Ta có : d // d' <=> \(a=\frac{1}{2}\)
Vì đồ thị hàm đi qua A( 2 ; - 2 ) nên thay x = 2 ; y = -2 vào (d)
phương trình đường thẳng (d) có dạng : \(2a+b=-2\)
\(\Rightarrow b=-2\)
Vậy a = 1/2 ; b = -2
d, (d) cắt Ox tại B( 1/2 ; 0 ) => OB = 1/2
(d) cắt Oy tại C ( 0 ; -2 ) => OC = 2
tam giác OBC vuông tại O
\(\Rightarrow S_{OBC}=\frac{1}{2}.OB.OC=\frac{1}{2}\left(đvdt\right)\)
a, tự vẽ nhé
b, * Vì d3 cắt d1, hoành độ giao điểm thỏa mãn phương trình
\(-\frac{1}{3}x+3=2x-2\Leftrightarrow-\frac{7}{3}x=-5\Leftrightarrow x=\frac{15}{7}\)
Thay x = 15/7 vào d1 ta được : \(y=\frac{30}{7}-2=\frac{16}{7}\)
* Vì d3 cắt d2, hoành độ giao điểm thỏa mãn phương trình
\(-\frac{4}{3}x-2=-\frac{1}{3}x+3\Leftrightarrow-x=5\Leftrightarrow x=-5\)
Thay x = -5 vào d2 ta được : \(y=\frac{20}{3}-2=\frac{14}{3}\)
Vậy d3 cắt d1 tại A ( 15/7 ; 16/7 )
d2 cắt d1 tại B( -5 ; 14/3 )
Để ptrinh có hai nghiệm x1 ; x2 => \(\Delta=25-4.\left(3m-1\right)=29-12m\ge0\)
=> \(m\le\frac{29}{12}\)
Theo viet \(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=3m-1\end{cases}}\)
=> \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(-5\right)^2-4.\left(3m-1\right)=29-12m\)
=> \(x_1-x_2=\sqrt{29-12m}\)
Có : \(x_1^3-x_2^3+3x_1x_2=\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)+3x_1x_2\)
\(=\left(x_1-x_2\right)\left(x_1^2-2x_1x_2+x_2^2+3x_1x_2\right)+3x_1x_2\)
\(=\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+3x_1x_2\)
\(=\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+3x_1x_2\)
\(\Rightarrow\sqrt{29-12m}\left[\left(-5\right)^2-3m+1\right]+3.\left(3m-1\right)=75\)
\(\Rightarrow\sqrt{29-12m}\left(26-3m\right)+9m-3=75\)
\(\Rightarrow\sqrt{\left(29-12m\right)\left(26-3m\right)^2}=78-9m\)
\(\Rightarrow\left(29-12m\right)\left(26-3m\right)^2=6084-1404m+81m^2\)
\(\Rightarrow108m^3-2052m^2+11232m-13520=0\)
=> \(\orbr{\begin{cases}m=\frac{5}{3}\left(tm\right)\\m=\frac{26}{3}\left(ktm\right)\end{cases}}\)
sry bạn làm ngắn hơn cũng đc chứ mik làm dài
\(B=\frac{1}{\sqrt{16}-2}-\frac{\sqrt{16}}{4-16}\)
\(B=\frac{1}{4-2}-\frac{4}{-12}\)
\(B=\frac{1}{2}+\frac{1}{3}\)
\(B=\frac{5}{6}\)
\(II\)
\(1,\)số xe công ty dự định là x
số xe thực tế x-2
số tấn mỗi xe chở dự định là \(\frac{24}{x}\)
số tấn mỗi xe thực tế chở là \(\frac{24}{x-2}\)
\(\frac{24}{x-2}-\frac{24}{x}=2\)
\(24x-24x+48=2x\left(x-2\right)\)
\(48=2x^2-4x\)
\(2x^2-4x-48=0\)
\(a=2,b=-4,c=-48\)
\(\Delta=\left(b\right)^2-4ac=16-\left(-384\right)\)
\(\Delta=16+384=400>0\)<=> có 2no pt
\(\sqrt{\Delta}=\sqrt{400}=20\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{24}{4}=6\left(tm\right)\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-20}{4}=-4\left(ktm\right)\)
\(III\)
\(1,\hept{\begin{cases}2\left(x+y\right)+\sqrt{x+1}=4\\\left(x+y\right)-3\sqrt{x+1}=-5\end{cases}< =>\hept{\begin{cases}2\left(x+y\right)+\sqrt{x+1}=4\\2\left(x+y\right)-6\sqrt{x+1}=-10\end{cases}}}\)
\(7\sqrt{x+1}=14\)
\(\sqrt{x+1}=2\)
\(\sqrt{x+1}=\sqrt{4}\)
\(x+1=4\)
\(x=3\)
\(2\left(3+y\right)+\sqrt{3+1}=4\)
\(\hept{\begin{cases}x=3\\6+2y+2=4\end{cases}< =>\hept{\begin{cases}x=3\\2y=-4\end{cases}< =>\hept{\begin{cases}x=3\\y=-2\end{cases}}}}\)
\(\)
x2 + 2x + 1 – (x2 – 2x + 1) = 4
⇔ x2 + 2x + 1 – x2 + 2x – 1 = 4
⇔ 4x = 4
⇔ x = 1 (không thỏa mãn đkxđ)
Vậy phương trình vô nghiệm.
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}=\frac{4}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow4x=4\Leftrightarrow x=1\)( ktmđk )
Vậy phương trình vô nghiệm