ab=?
a+b=9
ba gấp 2 lần ab cộng thêm 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2,5x+5\)
\(=x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\)
\(=\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{16}>=\dfrac{55}{16}>0\forall x\)
=>ĐPCM
Ta có: \(\dfrac{x-1}{3}=\dfrac{x-2}{2}\)
=>3(x-2)=2(x-1)
=>3x-6=2x-2
=>3x-2x=-2+6
=>x=4
\(x\times\) 2 = 5
\(x=5:2\)
\(x=\frac52\)
Vậy \(x=\frac52\)
Đổi 5h 24 phút = 27/5 giờ
Gọi độ dài quãng đường AB là x (km) với x>0
Thời gian xe đi từ A đến B là: \(\dfrac{x}{50}\) giờ
Thời gian xe đi từ B về A là: \(\dfrac{x}{40}\) giờ
Tổng thời gian cả đi và về là: \(\dfrac{x}{50}+\dfrac{x}{40}=\dfrac{9x}{200}\) giờ
Do cả đi và về mất 27/5 giờ nên ta có pt:
\(\dfrac{9x}{200}=\dfrac{27}{5}\)
\(\Leftrightarrow x=120\left(km\right)\)
Trường hợp đặc biệt:
Nếu F, E, N là các điểm chia các cạnh theo cùng một tỉ lệ (ví dụ: F chia AB theo tỉ lệ x, E chia BC theo tỉ lệ y, N chia CA theo tỉ lệ z sao cho x + y + z = 1).
Chứng minh tổng quát:
Trường hợp đặc biệt:
Nếu F, E, N là trung điểm các cạnh, thì mỗi phân số đều bằng 1/2, tổng lại là 3/2 ≠ 1.
Vậy công thức đúng khi ba điểm chia ba cạnh theo tỉ lệ x, y, z với x + y + z = 1.
Gọi H là hình chiếu vuông góc của O lên d
\(\Rightarrow AA_1||OH||BB_1\)
Áp dụng định lý Thales trong tam giác \(ABA_1\)
\(\dfrac{OH}{AA_1}=\dfrac{BH}{AB}\)
Áp dụng định lý Thales trong tam giác \(ABB_1\)
\(\dfrac{OH}{BB1}=\dfrac{AH}{AB}\)
\(\Rightarrow\dfrac{OH}{AA_1}+\dfrac{OH}{BB_1}=\dfrac{BH}{AB}+\dfrac{AH}{AB}\)
\(\Rightarrow OH.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=1\)
\(\Rightarrow OH=\dfrac{a.b}{a+b}\)
Do a, b không đổi \(\Rightarrow OH\) không đổi
Hay khoảng cách từ O đến d không đổi khi A, B chạy trên d
Bước 1: Xác định phương trình đường thẳng CD
Giả sử:
Bước 2: Tìm điểm cố định mà CD luôn đi qua
Bước 3: Giải hệ phương trình
Bước 4: Kiểm tra lại
Ví dụ minh họa:
Cho tam giác ABC cố định. Trên AB lấy điểm D di động, trên AC lấy điểm E di động sao cho \(A D = C E\). Chứng minh DE luôn đi qua một điểm cố định.
Giải:
Kết luận: DE luôn đi qua điểm cố định \(M \left(\right. 1 , - 1 \left.\right)\).
Đáp án:
Đường thẳng CD luôn đi qua điểm cố định \(M \left(\right. x_{0} , y_{0} \left.\right)\) được xác định bằng cách giải hệ phương trình từ phương trình tổng quát của CD145.
Bước 1: Xác định vị trí các điểm P, I, K, Q
Giả thiết:
Bước 2: Tính chất hình học
Bước 3: Tính diện tích PIKQ
Ví dụ minh họa:
Cho tam giác ABC có diện tích \(20 \textrm{ } \text{cm}^{2}\).
Kết luận:
Diện tích tứ giác PIKQ bằng một nửa diện tích tam giác ABC nếu các điểm P, I, K, Q là trung điểm của các cạnh134.
Công thức tổng quát:
\(S_{P I K Q} = \frac{1}{2} S_{A B C}\)
Đáp án:
Diện tích tứ giác PIKQ là \(\boxed{\frac{1}{2} S_{A B C}}\).
Bước 1: Xác định vị trí các điểm P, I, K, Q
Giả thiết:
Bước 2: Tính chất hình học
Bước 3: Tính diện tích PIKQ
Ví dụ minh họa:
Cho tam giác ABC có diện tích \(20 \textrm{ } \text{cm}^{2}\).
Kết luận:
Diện tích tứ giác PIKQ bằng một nửa diện tích tam giác ABC nếu các điểm P, I, K, Q là trung điểm của các cạnh134.
Công thức tổng quát:
\(S_{P I K Q} = \frac{1}{2} S_{A B C}\)
Đáp án:
Diện tích tứ giác PIKQ là \(\boxed{\frac{1}{2} S_{A B C}}\).
Giải:
Theo bài ra ta có:
\(\overline{ba}\) = 2 x \(\overline{ab}\) + 18
10b + a = 20a + 2b + 18
10b - 2b = 20a - a + 18
8b = 19a + 8
8b + 19b = 19b + 19a + 8
27b = 19.(a + b) + 18 (1)
Thay a + b = 9 vào (1)
27b = 19.9 + 18
27b = 171 + 18
27b = 189
b = 189 : 27
b = 7
a = 9 - b
a = 9 - 7
a = 2
Vậy \(\overline{ab}\) = 27