cho a,b,c là các số thực dương. chứng minh rằng \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+1}+\frac{1}{a^2+1}>\frac{a+b+1}{2}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HP
24 tháng 1 2017
gọi 4 số tự nhiên đó lần lượt là a-2,a-1,a,a+1
ta có (a-2)3+(a-1)3+a3=(a+1)3
khai triển rồi rút gọn ta được 2a3-12a2+12a-10=0
<=>2a3-10a2-2a2+10a+2a-10=0
<=>2a2(a-5)-2a(a-5)+2(a-5)=0
<=>(a-5)(2a2-2a+2)=0
<=>(a-5)(a2-a+1)=0
<=>a-5=0<=>a=5 (vì a2-a+1=(a-1/2)2+3/4>0 với mọi a)
Vậy 4 số tự nhiên liên tiếp cần tìm là 3;4;5;6
HP
24 tháng 1 2017
Áp dụng 1/x + 1/y >= 4/(x+y) với x,y>0(đề có thiếu ko nhỉ)
Dấu "=" xảy ra khi x=y
24 tháng 1 2017
ta co 10=x+y>=2can xy
100=(x+y)2>=4xy
100/xy>=4
10/xy>=4/10
1:x+1:y>=2/5
HP
24 tháng 1 2017
ta có a=3/2b (1) a-6=1/2(b+8) (2)
tự thế pt (1) vào (2) rồi giải nhé , (a=15,b=10)