a) Vẽ n tia chung gốc. Khi đó trên hình có bao nhiêu góc?
b) Từ n tia chung gốc người ta đếm được 378 góc. Tính n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x-101=0\)
\(\Leftrightarrow x=101\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}-\frac{100}{99}-\frac{99}{98}-\frac{96}{95}=0\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
Do \(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\ne0\)
Mà \(x-101=0\Leftrightarrow x=101\)
Vậy x = 101
\(\frac{x}{2}=\frac{y}{5}\)và \(3x-y=5\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{5}=\frac{3x-y}{3.2-5}=\frac{5}{1}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{5}=5\end{cases}\Rightarrow\hept{\begin{cases}x=10\\y=25\end{cases}}}\)
Sửa đề : \(\frac{x}{4}=\frac{y}{7}\) và \(x-y=9\)
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{9}{-3}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=-3\\\frac{y}{7}=-3\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-21\end{cases}}}\)
a, \(2\frac{7}{9}-\frac{12}{13}x=\frac{7}{9}\)
\(\Leftrightarrow\frac{25}{9}-\frac{12}{13}x=\frac{7}{9}\Leftrightarrow\frac{12}{13}x=2\Leftrightarrow x=\frac{13}{6}\)
b, \(\frac{x-12}{4}=\frac{9-3x}{x}\)
\(\Leftrightarrow x^2-12x=36-12x\Leftrightarrow x^2-12x-36+12x=0\)
\(\Leftrightarrow x^2-36=0\Leftrightarrow x^2=36\Leftrightarrow x=\pm6\)
a, \(\frac{x}{3}-\frac{1}{4}=-\frac{5}{6}\Leftrightarrow\frac{x}{3}+\frac{7}{12}=0\Leftrightarrow\frac{4x}{12}+\frac{7}{12}=0\)
Khử mẫu ta đc : \(4x+7=0\Leftrightarrow4x=-7\Leftrightarrow x=-\frac{7}{4}\)
b, \(\frac{x+3}{15}=\frac{1}{3}\Leftrightarrow\frac{x+3}{15}=\frac{5}{15}\)
Khử mẫu ta đc : \(x+3=5\Leftrightarrow x=2\)