\(\frac{4^6.9^5+6^9:120}{8.4.3^{12}-6^{11}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{6^3+3\times6^2+3^3}{-13}=\frac{2^3\times3^3+3\times2^2\times3^2+3^3}{-13}\)
\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}\)
\(=\frac{3^3\times13}{-13}\)
\(=-27\)

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)
\(\Rightarrow1+\frac{1}{2.3}.2+\frac{1}{3.4}.2+...+\frac{1}{x\left(x+1\right)}.2=2\)
=> \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=2\)
=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x\left(x+1\right)}=1\)
=> \(1-\frac{1}{x+1}=1\)
=> \(\frac{1}{x+1}=0\Rightarrow0\left(x+1\right)=1\Rightarrow x\in\varnothing\)
\(\frac{1}{1.2:2}+\frac{1}{2.3:2}+\frac{1}{3.4:2}+...+\frac{1}{x.\left(x+1\right):2}=2\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=2\)
\(2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2\)
\(1-\frac{1}{x+1}=1\)
\(\frac{1}{x+1}=0\)
Vậy x vô nghiệm.

\(\frac{30303}{80808}=\frac{3\times10101}{8\times10101}=\frac{3}{8}\)

\(3^{x+4}+3^{x+2}=270\)
\(< =>3^x.81+3^x.9=270\)
\(< =>3^x=\frac{270}{90}=3< =>x=1\)
\(3^{x+4}+3^{x+2}=270\)
\(\Leftrightarrow3^x.81+3^x.9=270\)
\(\Leftrightarrow3^x\left(81+9\right)=270\)
\(\Leftrightarrow3^x.90=270\)
\(\Leftrightarrow3^x=3\)
\(\Leftrightarrow x=1\)

Đặt A=2.22.23.24...2100
2A=2(2.22.23.24...2100)
2A=22.23.24...2101
2A-A=2101-2
A=2101-2/2

Động Từ :
Put , do , pick , go , get , have , study , sing , catch , dance
Danh từ :
dog , cat , hat , shirt , balloon , print , piano , bass , computer , maracas
10 động từ là:go,jum,sing,dance,sleep,water,wash,write,read,cry
9 danh từ là:flower,sand,family,home,house,book,pen,computer,clock
ks nhé!Học tốt!

\(I=1^2+2^2+3^2+4^2+...+2017^2+2018^2\)
\(I=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(2018^2-2017^2\right)\)
\(I=\left(1+2\right)\left(2-1\right)+\left(3+4\right)\left(4-3\right)+...+\left(2017+2018\right)\left(2018-2017\right)\)
\(I=1+2+3+4+...+2017+2018\)
\(I=\frac{\left(2018+1\right).2018}{2}=2037171\)
I = 12 + 22 + 32 + ... + 20172
= 1.1 + 2.2 + 3.3 + ... + 2017.2017
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + .... + 2017.(2018 - 1)
= 1.2 + 2.3 + 3.4 + ... + 2017.2018 - (1 + 2 + 3 + 4 + ... + 2017)
= 1.2 + 2.3 + 3.4 + ... + 2017.2018 - 2035153
Đặt K = 1.2 + 2.3 + 3.4 + ... + 2017.2018
=> 3K = 1.2.3 + 2.3.3 + 3.4.3 + .... + 2017.2018.3
=> 3K = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2017.2018.(2019 - 2016)
=> 3K = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 2017.2018.2019 - 2016.2017.2018
=> 3K = 2017.2018.2019
=> K = 2017.2018.2019 : 3
=> K = 2739315938
Lại có I = K - 2035153
= 2739315938 - 2035153
= 2 737 280 785

\(I=1\left(2-1\right)+2\left(3-1\right)+...+2017\left(2018-1\right)\)
\(I=\left(1.2+2.3+...+2017.2018\right)-\left(1+2+...+2017\right)\)
\(3I=\left(1.2.3+2.3\left(4-1\right)+...+2017.2018\left(2019-2016\right)\right)-\frac{3.2017.2018}{2}\)
=> \(I=\frac{2017.2018.2019}{3}-2017.1009\)
=> \(I=.....\)