K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

đặt b+c-a=x,a+c-b=y,a+b-c=z thì x,y,z>0 do a,b,c>0

=>x+y+z=a+b+c

có a=(y+z)/2 , b=(z+x)/2 ,c=(x+y)/2

A=(y+z)/2x + (z+x)/2y + (x+y)/2z =1/2[(x/y+y/x)+(y/z+z/y)+(x/z+z/x)

Áp dụng bđt cosi : x/y+y/x >= 2,y/z+z/y >= 2,z/x+x/z >= 2 

=>A >= 1/2.6=3 (đpcm)

Dấu "=" xảy ra <=> x=y=z<=>b+c-a=a+c-b=a+b-c<=>a=b=c <=> tam giác đó là tam gíac đều

31 tháng 1 2017

Áp dụng bđt Cauchy-Schawrz dạng Engel ta có:

A = a^2/ab+ac-a^2  +  b^2/ab+bc-b^2  +  c^2/ac+bc-c^2

A \(\ge\)(a+b+c)^2/2.(ab+bc+ca)-(a^2+b^2+c^2)

A \(\ge\)a^2+b^2+c^2+2.(ab+bc+ca)/2.(ab+bc+ca)-(a^2+b^2+c^2)

A \(\ge\)2.(ab+bc+ca)-(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2)  +  2.(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2)

A \(\ge\)1  +  2.(a^2+b^2+c^2)/2.(a^2+b^2+c^2)-(a^2+b^2+c^2)

A \(\ge\) 1 + 2 = 3 (đpcm)

Dấu "=" xảy ra khi a = b = c

31 tháng 1 2017

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

31 tháng 1 2017

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2

31 tháng 1 2017

\(\frac{a}{a+b}\)>=  \(\frac{a}{a+a}\)= \(\frac{1}{2}\)( vì a + a >= a + b vì a >= b ) 

\(\frac{b}{b+c}\) >= \(\frac{b}{b+b}\)= \(\frac{1}{2}\)( vì b + b >= b + c vì b >= c )

\(\frac{c}{c+a}\)>= \(\frac{c}{c+c}\)  = \(\frac{1}{2}\)( vì c + c >= c + a vì c>=0 )

Từ 3 điều này suy ra

\(\frac{a}{a+b}\)+ \(\frac{b}{b+c}\)+ \(\frac{c}{c+a}\)>=  \(\frac{3}{2}\)

31 tháng 1 2017

dễ dàng c/m (x+y+z)(1/x+1/y+1/z) \(\ge\) 9,dấu "=" khi x=y=z (*)

a/a+b +b/b+c +c/c+a >= 3/2

<=>(a/b+c + 1) + (b/c+a + 1) + (c/a+b + 1) >= 3/2+1+1+1

<=>(a+b+c)/(b+c) + (a+b+c)/(c+a) + (a+b+c)/(a+b) >= 9/2

<=>2(a+b+c)(1/b+c + 1/c+a + 1/a+b) >= 9/2

<=>[(b+c)+(c+a)+(a+b)](1/b+c + 1/c+a + 1/a+b) >= 9/2 (bđt (*))

31 tháng 1 2017

|x+1| = |x(x+1)|

<=> |x+1| = |x|.|x+1|

<=> |x+1| - |x|.|x+1| = 0

<=> |x+1|.(1 - |x|) = 0

Đến đây dễ r`

31 tháng 1 2017

Cho a là số học sinh giỏi
       b là số học sinh khá
Theo đề bài ta có:  b= 3a/2   (1)
                            (b-6)= (a+8)/2 (2)
từ (1) và (2) => 3a/2 -6 = (a+8)/2 => (3a-12)/2 = (a+8)/2 => 3a-12=a+8 => 2a = 20 => a =10