Giúp me zới!!! Bài 1: Tìm giá trị nhỏ nhất:
a)A=x2-2xy+5y2+4y+51
b)B=121/-4xy2-12x+2
c)C=9/-2x2+4x-7
d)10x2+4y2-4xy+8x-4y+20
e)E=9x2+2y2+6xy-6x-8y+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
moi nguoi co the giai duoc cau do sau ko???
47694 tan = ..... kg
295749 ta =....kg
396857295 kg=.....dg
47694 tấn = 47694000kg / 295749 tạ = 29574900kg / 396857295 kg=39685729500dg
47694 tan = ..47694000. kg
295749 ta =..29,574900 ..kg
1. \(-x^2-2y^2+2xy-4x+2y-12\)
\(=-y^2-2y-1-x^2-y^2-4-4x+4y+2xy-7\)
\(=-\left(y+1\right)^2-\left(x-y+2\right)^2-7\le-7\)
Dấu \(=\)khi \(\hept{\begin{cases}y+1=0\\x-y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}\).
2. \(-10x^2-y^2+6xy+10x-2y+2\)
\(=-x^2+4x-4-9x^2-y^2-1+6x-2y+6xy+7\)
\(=-\left(x-2\right)^2-\left(3x-y-1\right)^2+7\le7\)
3. \(-x^2-5y^2-4xy+2x-2y-5\)
\(=-y^2-6y-9-x^2-4y^2+1-4xy+2x+4y+5\)
\(=-\left(y+3\right)^2-\left(x+2y-1\right)^2+5\le5\)
4. \(-x^2-26y^2+10xy-14x+76y-59\)
\(=-y^2-6y-9-x^2-25y^2-49-14x+70y+10xy-1\)
\(=-\left(y+3\right)^2-\left(x-5y+7\right)^2-1\le-1\)
5. Bạn thử tự vận dụng như cách làm bên trên nhé.
a) \(16x^2-1=0\)
\(\Rightarrow16x^2=1\)
\(\Rightarrow x^2=\frac{1}{16}\)
\(\Rightarrow x^2=\left(\pm\frac{1}{4}\right)^2\)
\(\Rightarrow x=\orbr{\begin{cases}\frac{1}{4}\\\frac{-1}{4}\end{cases}}\)
b) \(x^2+\frac{1}{4}=0\)
Ta có: \(x^2\ge0\forall x\Rightarrow x^2+\frac{1}{4}\ge\frac{1}{4}>0\)
=> Vô nghiệm
c) \(x^3+3x^2-\left(x+3\right)=0\)
\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\)
Trường hợp 1: \(x-1=0\Rightarrow x=1\)
Trường hợp 2: \(x+1=0\Rightarrow x=-1\)
Trường hợp 3: \(x+3=0\Rightarrow x=-3\)
\(8x^3-2x=0\)
\(\Rightarrow2x\left(4x^2-1\right)=0\)
\(\Rightarrow2x\left(2x-1\right)\left(2x+1\right)=0\)
Trường hợp 1: \(2x=0\Rightarrow x=0\)
Trường hợp 2: \(2x-1=0\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Trường hợp 3: \(2x+1=0\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)
a) \(A=x^2-2xy+5y^2+4y+51=x^2-2xy+y^2+4y^2+4y+1+50\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)
Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{2}\).
b) \(B=\frac{121}{-4x^2-12x+2}=\frac{121}{-4\left(x^2+3x+\frac{9}{4}\right)+11}=\frac{121}{-4\left(x+\frac{3}{2}\right)^2+11}\)
c) \(C=\frac{9}{-2x^2+4x-7}=\frac{9}{-2\left(x^2-2x+1\right)-5}\)
d) \(D=10x^2+4y^2-4xy+8x-4y+20\)
\(=9x^2+6x+1+x^2+4y^2+1+2x-4y-4xy+18\)
\(=\left(3x+1\right)^2+\left(x-2y+1\right)^2+18\)
e) \(E=9x^2+2y^2+6xy-6x-8y+10\)
\(=y^2-6y+9+9x^2+y^2+1+6xy-6x-2y\)
\(=\left(y-3\right)^2+\left(3x+y-1\right)^2\)