4x1^2 -x1-3x2^2+X2=X1X2 giúp mình zới ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giá của mỗi ly kem ban đầu là x ngàn đồng (x>10)
Giá của mỗi ly kem kể từ ly thứ 10 là: \(x-10\) (ngàn đồng)
Giá tiền của 40 ly kem chưa tính khuyến mãi 20% là:
\(9x+31.\left(x-10\right)=40x-310\) (ngàn đồng)
Giá tiền sau khi giảm 20% trên hóa đơn là:
\(\left(40x-310\right).\left(100\%-20\%\right)=0,8.\left(40x-310\right)\)
Do lớp 9A phải trả 712 ngàn đồng nên ta có pt:
\(0,8\left(40x-310\right)=712\)
\(\Rightarrow x=30\) (ngàn đồng)
Vậy mỗi ly kem ban đầu có giá 30000 đồng
Ở câu b, đề là \(\widehat{ADF}+\) cái gì \(=90^0\) độ em ha?
a: Thay m=3 vào phương trình, ta được:
\(x^2+4x+3=0\)
=>(x+1)(x+3)=0
=>\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
b: \(\text{Δ}=4^2-4\cdot1\cdot m=-4m+16\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+16>0
=>-4m>-16
=>m<4
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(2x_1x_2=x_1+x_2+10\)
=>2m=-4+10=6
=>m=3(nhận)
Gọi chiều rộng của mảnh đất là x (m) với x>0
Chiều dài của mảnh đất là: \(x+4\) (m)
Diện tích mảnh đất là: \(x\left(x+4\right)\) (m)
Do diện tích mảnh đất là 285 \(m^2\) nên ta có pt:
\(x\left(x+4\right)=285\)
\(\Leftrightarrow x^2+4x-285=0\Rightarrow\left[{}\begin{matrix}x=15\\x=-19< 0\left(loại\right)\end{matrix}\right.\)
Vậy chiều rộng mảnh đất là 15m, chiều dài là \(15+4=19\)m
Chu vi mảnh đất là: \(\left(15+19\right).2=68\left(m\right)\)
a.
\(\Delta'=\left(-3\right)^2-2.3=3>0\) nên pt đã cho có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=\dfrac{3}{2}\end{matrix}\right.\)
b.
\(A=\dfrac{2x_1-x_2}{x_1}-\dfrac{x_1-2x_2}{x_2}=\dfrac{2x_1}{x_1}-\dfrac{x_2}{x_1}-\dfrac{x_1}{x_2}+\dfrac{2x_2}{x_2}\)
\(=4-\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)=4-\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)=4-\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\)
\(=4-\dfrac{3^2-2.\dfrac{3}{2}}{\dfrac{3}{2}}=4-4=0\)
a: Xét tứ giác AOBM có \(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
nên AOBM là tứ giác nội tiếp
b: Xét ΔAOM vuông tại A có \(sinAMO=\dfrac{AO}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là các tiếp tuyến
DO đó: MA=MB và MO là phân giác của góc AMB
MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)
AOBM nội tiếp
=>\(\widehat{AOB}+\widehat{AMB}=180^0\)
=>\(\widehat{AOB}=120^0\)
Độ dài đường tròn (O) là:
\(C=2\cdot5\cdot3,14=31,4\left(cm\right)\)
Diện tích hình quạt tròn ứng với cung nhỏ AB là:
\(S_{q\left(AB\right)}=\Omega\cdot5^2\cdot\dfrac{120}{360}=5^2\cdot\dfrac{3.14}{3}=\dfrac{157}{6}\left(cm^2\right)\)
c: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: OM là phân giác của góc AOB
=>\(\widehat{AOM}=\widehat{BOM}=\dfrac{120^0}{2}=60^0\)
Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)
nên ΔOAC đều
=>AC=OC=OA=R
Xét ΔOCB có OC=OB và \(\widehat{COB}=60^0\)
nên ΔOCB đều
=>OC=CB=OB=R
Xét tứ giác OACB có
OA=AC=CB=OB
nên OACB là hình thoi
Giải:
Câu a tự làm
b; Phương trình hoành độ giao điểm của (p) và (d) là:
\(x^2\) = - 2\(x\) + 3
\(x^2\) + 2\(x\) - 3 = 0
a + b + c = 1 + 2 - 3 = 0
Vậy phương trình có hai nghiệm phân biệt lần lượt là:
\(x_1\) = 1; \(x_2\) = - 3
\(x_1\) = 1 ⇒ y1 = 12 = 1; \(x_2\) = - 3 ⇒ y2 = (\(x_2\))2 = (- 3)2 = 9
Vậy (p) cắt (d) tại hai điểm A; B lần lượt có tọa độ là:
A(1; 1); B(-3; 9)
a.
Do MA, MB là các tiếp tuyến \(\Rightarrow\widehat{MAO}=\widehat{MBO}=90^0\)
\(\Rightarrow A,B\) cùng nhìn OM dưới 1 góc vuông nên AOBM nội tiếp
b.
\(C_{\left(O\right)}=2\pi R=10\pi=31,42\left(cm\right)\)
Trong tam giác vuông OAM:
\(cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AOM}=60^0\)
\(\Rightarrow\widehat{AOB}=2\widehat{AOM}=120^0\)
\(\Rightarrow S_{OAB}=S_{\left(O\right)}.\dfrac{120}{360}=\dfrac{\pi.R^2}{3}=\dfrac{5^2.\pi}{3}\approx26,18\)
c.
Ta có \(CM=OM-OC=2R-R=R\)
\(\Rightarrow CM=OC\Rightarrow C\) là trung điểm OM
\(\Rightarrow AC\) là trung tuyến ứng với cạnh huyền trong tam giác vuông OAM
\(\Rightarrow AC=\dfrac{1}{2}OM=R=OA\)
Tương tự có BC là trung tuyến ứng với cạnh huyền trong tam giác vuông OBM
\(\Rightarrow BC=OC=R\)
\(\Rightarrow OA=AC=BC=OB\Rightarrow AOBC\) là hình thoi
Gọi D là giao điểm AB và OC \(\Rightarrow AD\perp OC\) (hai đường chéo hình thoi)
Trong tam giác vuông AOD:
\(sin\widehat{AOD}=\dfrac{AD}{OA}\Rightarrow AD=OA.sin\widehat{AOD}=5.sin60^0=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
\(\Rightarrow AB=2AD=5\sqrt{3}\) (cm)
\(\Rightarrow S_{AOBC}=\dfrac{1}{2}AD.OC=\dfrac{25\sqrt{3}}{2}\approx21,65\left(cm^2\right)\)
Em cần làm gì với biểu thức này?