12,6nhân x cộng x nhân 27,4 bằng 38
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3\(x\) = 97 - 1
3\(x\) = 96
\(x\) = 96 : 3
\(x\) = 32
87 - 2\(x\) + 8 = 0
95 - 2\(x\) = 0
2\(x\) = 95
\(x\) = \(\dfrac{95}{2}\) ≠ 32
Không tồn tại \(x\) thỏa mãn đề bài.
1: Chiều cao của khối rubik là:
\(44,002\cdot3:22,45=5,88\left(cm\right)\)
2:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)
=>\(BA^2=BH\cdot BC\)
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
Xét ΔCAB có CD là phân giác
nên \(\dfrac{DA}{AC}=\dfrac{DB}{BC}\)
=>\(\dfrac{DA}{24}=\dfrac{DB}{30}\)
=>\(\dfrac{DA}{4}=\dfrac{DB}{5}\)
mà DA+DB=AB=18cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DA}{4}=\dfrac{DB}{5}=\dfrac{DA+DB}{4+5}=\dfrac{18}{9}=2\)
=>\(DA=4\cdot2=8\left(cm\right)\)
\(\dfrac{2x-5}{x-1}\) nguyên
⇒ \(\left(2x-5\right)⋮\left(x-1\right)\)
Mà \(\left(x-1\right)⋮\left(x-1\right)\)
⇒ \(\left[\left(2x-5\right)-\left(x-1\right)-\left(x-1\right)\right]⋮\left(x-1\right)\)
⇒ \(\left(-3\right)⋮\left(x-1\right)\)
⇒ \(\left(x-1\right)\inƯ\left(-3\right)\)
\(\in\left\{1;3;-1;-3\right\}\)
\(x-1\) | 1 | 3 | -1 | -3 |
\(x\) | 2 | 4 | 0 | -2 |
Vậy \(x\in\left\{-2;0;2;4\right\}\)
a: Vì \(\dfrac{6}{12}=\dfrac{9}{18}=\dfrac{12}{24}\left(=\dfrac{1}{2}\right)\)
nên hai tam giác này đồng dạng với nhau
b: Vì \(\dfrac{AB}{DE}=\dfrac{AC}{DF}\ne\dfrac{BC}{EF}\)
nên hai tam giác này không đồng dạng với nhau
Câu 5:
Gọi hàm số bậc nhất cần tìm có dạng là y=ax+b(\(a\ne0\))
Vì đồ thị hàm số y=ax+b song song với đường thẳng y=-2x+1 nên \(\left\{{}\begin{matrix}a=-2\\b\ne1\end{matrix}\right.\)
Vậy: y=-2x+b
Thay x=-1 và y=3 vào y=-2x+b, ta được:
\(\left(-2\right)\cdot\left(-1\right)+b=3\)
=>b+2=3
=>b=1(loại)
Vậy: KHông có hàm số bậc nhất nào thỏa mãn yêu cầu đề bài
Câu 4:
Gọi hàm số bậc nhất cần tìm có dạng là y=ax+b(\(a\ne0\))
Vì đồ thị hàm số y=ax+b song song với đường thẳng y=-2x+1 nên \(\left\{{}\begin{matrix}a=-2\\b\ne1\end{matrix}\right.\)
Vậy: y=-2x+b
Thay x=-1 và y=4 vào y=-2x+b, ta được:
\(\left(-2\right)\cdot\left(-1\right)+b=4\)
=>b+2=4
=>b=2(nhận)
vậy: y=-2x+2
Vì số chia là 4 nên số chia chỉ có thể là: 0; 1; 2; 3
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
=>HM=HN
c: ΔAMH=ΔANH
=>AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: HM=HN
=>H nằm trên đường trung trực của NM(2)
Từ (1),(2) suy ra AH là đường trung trực của NM
=>AH\(\perp\)NM
d: Xét ΔAPQ có
PN,QM là các đường cao
PN cắt QM tại H
Do đó: H là trực tâm của ΔAPQ
=>AH\(\perp\)PQ tại E
Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)
nên AMHN là tứ giác nội tiếp
Xét tứ giác HMPE có \(\widehat{HMP}+\widehat{HEP}=90^0+90^0=180^0\)
nên HMPE là tứ giác nội tiếp
Xét tứ giác HNQE có \(\widehat{HNQ}+\widehat{HEQ}=90^0+90^0=180^0\)
nên HNQE là tứ giác nội tiếp
Ta có: \(\widehat{MEH}=\widehat{MPH}\)(MHEP nội tiếp)
\(\widehat{NEH}=\widehat{NQH}\)(NHEQ nội tiếp)
mà \(\widehat{MPH}=\widehat{NQH}\left(=90^0-\widehat{PAQ}\right)\)
nên \(\widehat{MEH}=\widehat{NEH}\)
=>EH là phân giác của góc MEN
Ta có: \(\widehat{NMH}=\widehat{NAH}\)(AMHN nội tiếp)
\(\widehat{EMH}=\widehat{EPH}\)(MHEP nội tiếp)
mà \(\widehat{NAH}=\widehat{EPH}\left(=90^0-\widehat{AQP}\right)\)
nên \(\widehat{NMH}=\widehat{EMH}\)
=>MH là phân giác của góc NME
Xét ΔNME có
MH,EH là các đường phân giác
Do đó: H là tâm đường tròn nội tiếp ΔNME
=>H là điểm cách đều ba cạnh của ΔMNE
12,6 \(\times\) \(x\) + \(x\times\) 27,4 = 38
\(x\times\) (12,6 + 27,4) = 38
\(x\) x 40 = 38
\(x\) = 38 : 40
\(x\) = 0,95
\(12,6\times x+x\times27,4=38\)
\(x\times\left(12,6+27,4\right)=28\)
\(x\times40=28\)
\(x=28:40\)
\(x=0,7\)