K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

P =\(\sqrt{\frac{a+b}{a+b+c}}+\sqrt{\frac{b+c}{a+b+c}}+\sqrt{\frac{c+a}{a+b+c}}\)

\(=1.\sqrt{\frac{a+b}{a+b+c}}+1.\sqrt{\frac{b+c}{a+b+c}}+1.\sqrt{\frac{c+a}{a+b+c}}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}\right)}=\sqrt{3.2}=\sqrt{6}\)(BĐT Bunyakovsky)

12 tháng 12 2021

a) Xét ΔEAM và ΔNAD có 

AE=AN(gt)

ˆEAM=ˆNADEAM^=NAD^(hai góc đối đỉnh)

AM=AD(A là trung điểm của MD)

Do đó: ΔEAM=ΔNAD(c-g-c)

Suy ra: ME=ND(Hai cạnh tương ứng)

12 tháng 12 2021

ứdfrthyjuiopoikujyhgtf

12 tháng 12 2021

Ta có:

\(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\text{ Vì thế, }A=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...-\frac{1}{\sqrt{401}}< 1.\)

12 tháng 12 2021

\(\frac{1}{\sqrt{2}}\)\(\frac{1}{\sqrt{3}}\)\(\frac{1}{\sqrt{4}}\)+ ......... + \(\frac{1}{\sqrt{400}}\)\(< 38\)

Ta chứng minh \(\frac{1}{k}\)\(< \frac{2}{\sqrt{k}\sqrt{k-1}}\)với mọi với mọi \(k\text{∈}N\cdot,k>2\)

Gỉa sử

\(\frac{1}{k}< \frac{2}{\sqrt{k}\sqrt{k-1}}\)\(k\text{∈}N\cdot,k>2\)

\(=\sqrt{k}+\sqrt{k-1}< 2\sqrt{k}=\sqrt{k-1}< \sqrt{k}< k-1< k\)

Khi đó ta có :

\(\frac{1}{\sqrt{k}}\)\(< \frac{2}{\sqrt{k}\sqrt{k-1}}\)\(< \frac{2\left(\sqrt{k}\sqrt{k-1}\right)}{k-\left(k-1\right)}\)\(=2\left(\sqrt{k}\sqrt{k-1}\right)\)

\(VT\left(\cdot\right)< 2\left(\sqrt{2}+\sqrt{1}+\sqrt{3}-\sqrt{2}+......+\sqrt{400}-\sqrt{399}\right)\)

\(VT\left(\cdot\right)< 2\left(\sqrt{400}-1\right)=2.\left(20-1\right)=38\left(dpcm\right)\)

12 tháng 12 2021

tu di ma lam lop 9 r

12 tháng 12 2021

còn cái nịt

12 tháng 12 2021

Từ BĐT luôn đúng \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)(1)

Tương tự, ta có \(b^2+1\ge2b\)(2)

Từ (1) và (2) \(\Rightarrow a^2+b^2+b^2+1\ge2ab+2b\)\(\Leftrightarrow a^2+2b^2+3\ge2ab+2b+2\)

\(\Leftrightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)\(\Leftrightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}\)(3)

Tương tự, ta có: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1}\)(4) và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ca+a+1}\)(5)

Từ (3), (4) và (5) \(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

- Hết phần 1-

12 tháng 12 2021

123654987 + 987654321 + 321654789 = 1432964097

12 tháng 12 2021

=1432964097 nha

HT & k

tính mãi mới ra

12 tháng 12 2021

\(\sqrt{x^2-10x+25}-3=0\)\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3\)\(\Leftrightarrow\left|x-5\right|=3\)(*)

Trường hợp \(x\ge5\)thì (*) \(\Leftrightarrow x-5=3\Leftrightarrow x=8\left(nhận\right)\)

Trường hợp \(x< 5\)thì (*) \(\Leftrightarrow5-x=3\Leftrightarrow x=2\left(nhận\right)\)

Vậy phương trình đã cho có tập nghiệm \(S=\left\{2;8\right\}\)