tìm số lớn nhất có tám chữ số có chữ số hàng trăm nghìn là 3 chữ số hàng nghìn là 6 và chữ số hàng chục là 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\7y=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2=4\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=4-2=2\\y=1\end{matrix}\right.\)
Vậy: ...
\(\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x+4y-\left(2x-3y\right)=8-1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x+4y-2x+3y=7\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x+4y=8\\\left(2x-2x\right)+\left(4y+3y\right)=7\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x+4y=8\\0+7y=7\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+4y=8\\y=1\end{matrix}\right.\)
Thay y = 1 vào biểu thức 2\(x\) + 4y = 8 ta có: 2\(x\) + 4.1 = 8
⇒ 2\(x\) + 4 = 8 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 ⇒ \(x\) = 2
Vậy \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a) Ta có: \(\widehat{cNb}+\widehat{MNb}=180^{\circ}\) (hai góc kề bù)
\(\Rightarrow\widehat{MNb}=180^{\circ}-\widehat{cNb}=180^{\circ}-55^{\circ}=125^{\circ}\)
b) Ta có: \(\widehat{MNb}=\widehat{aMN}\left(=125^{\circ}\right)\)
Mà hai góc này đều nằm ở vị trí so le trong
Nên \(Ma//Nb\)
Nửa chu vi của hình chữ nhật là: 60:2=30(m)
Chiều rộng của hình chữ nhật là: (30-6):2=12(m)
Chiều dài của hình chữ nhật là: 30 - 12 = 18(m)
Diện tích mảnh đất là: 18 x 12 = 216 (m2)
Đáp số: 216m2
Giải:
Nửa chu vi của mảnh vườn hình chữ nhật là:
60 : 2 = 30 (m)
Gọi chiều rộng lúc đầu của mảnh vườn hình chữ nhật là \(x\) (m); 30 > \(x\) > 0
Chiều dài lúc đầu của mảnh vườn hình chữ nhật là: 30 - \(x\) (m)
Chiều dài của mảnh vườn hình chữ nhật lúc sau là:
30 - \(x\) + 2 = (30 + 2) - \(x\) = 32 - \(x\) (m)
Chiều rộng của hình chữ nhật lúc sau là: \(x\) + 6 (m)
Diện tích của hình chữ nhật lúc sau là:
(32 - \(x\))(\(x\) + 6) (m2)
Diện tích của mảnh vườn hình chữ nhật lúc đầu là: (30 - \(x\)) x \(x\) = 30\(x\) - \(x^2\) (m2)
Theo bài ra ta có phương trình:
(32 - \(x\))(\(x\) + 6) - (30\(x\) - \(x^2\)) = 96
32\(x\) + 192 - \(x^2\) - 6\(x\) - 30\(x\) + \(x^2\) = 96
(32\(x\) - 6\(x\) - 30\(x\)) + 192 - (\(x^2\) - \(x^2\)) = 96
(26\(x\) - 30\(x\)) + 192 + 0 = 96
- 4\(x\) + 192 = 96
4\(x\) = 192 - 96
4\(x\) = 96
\(x\) = 96 : 4
\(x\) = 24
Chiều dài ban đầu của hình chữ nhật là: 30 - 24 = 6 (m)
6 < 24
Chiều dài nhỏ hơn chiều rộng, không có hình chữ nhật nào có kích thước thoả mãn đề bài.
S = \(\dfrac{3}{2}\)+ \(\dfrac{7}{6}\)+\(\dfrac{13}{12}\)+...+\(\dfrac{9901}{9900}\)
Xin giúp với!!!
\(S=\dfrac{3}{2}+\dfrac{7}{6}+\dfrac{13}{12}+...+\dfrac{9901}{9900}\)
\(=1+\dfrac{1}{2}+1+\dfrac{1}{6}+...+1+\dfrac{1}{9900}\)
\(=\left(1+1+1+...+1\right)+\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\)
\(=99+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=99+\left(1-\dfrac{1}{100}\right)=100-\dfrac{1}{100}=\dfrac{10000-1}{100}=\dfrac{9999}{100}\)
S = ( 1+\(\dfrac{1}{2}\) ) + ( 1 + \(\dfrac{1}{6}\) ) + .... + ( 1 + \(\dfrac{1}{9900}\) )
= 9900 + ( \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ..... + \(\dfrac{1}{99.100}\) )
= 9900 + ( 1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ..... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\) )
= 9900 + 1 - \(\dfrac{1}{100}\)
= 9901 - \(\dfrac{1}{100}\)
Tam giác ABC vuông tại A ta có:
\(tanB=\dfrac{AC}{AB}=>\dfrac{5}{12}=\dfrac{AC}{6}=>AC=\dfrac{5\cdot6}{12}=\dfrac{5}{2}\left(cm\right)\)
Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}\\ =>BC=\sqrt{6^2+\left(\dfrac{5}{2}\right)^2}=\dfrac{13}{2}\left(cm\right)\)
Để giải bài toán, ta cần sử dụng một số công thức và định lý trong hình học, đặc biệt là định lý Pythagore và định nghĩa của các hàm số lượng giác.
Cho tam giác ABC vuông tại A, với AB = 6 cm và tanα = 5/12. Góc B = α.
a) Tính độ dài cạnh AC
Vì tam giác vuông tại A, góc α là góc B, ta có:
tan(α)=đoˆˊi diệnkeˆˋ\tan(\alpha) = \frac{\text{đối diện}}{\text{kề}}
Trong tam giác ABC vuông tại A:
tan(α)=BCAC\tan(\alpha) = \frac{BC}{AC}
Theo đề bài, tan(α)=512\tan(\alpha) = \frac{5}{12}.
Do đó, ta có:
BCAC=512\frac{BC}{AC} = \frac{5}{12}
Từ đó suy ra:
BC=512ACBC = \frac{5}{12} AC
b) Tính độ dài cạnh BC
Ta sử dụng định lý Pythagore cho tam giác ABC vuông tại A:
BC2=AB2+AC2BC^2 = AB^2 + AC^2
Đầu tiên, ta cần tính AC.
Biết rằng tan(α)=512\tan(\alpha) = \frac{5}{12}, do đó ta có:
sin(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2} sin(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}
Vì tan(α) = 5/12 nên ta đặt BC = 5k và AC = 12k. Vì thế:
BC=5kBC = 5k
AC=12kAC = 12k
Sử dụng định lý Pythagore:
BC2=AB2+AC2BC^2 = AB^2 + AC^2
(5k)2=AB2+(12k)2(5k)^2 = AB^2 + (12k)^2
25k2=62+144k225k^2 = 6^2 + 144k^2
25k2=36+144k225k^2 = 36 + 144k^2
Từ đó, ta có:
AC=12k5AC = \frac{12k}{5}
AC2=AB2+BC2AC^2 = AB^2 + BC^2
(12k)2=62+(5k)2(12k)^2 = 6^2 + (5k)^2
144k2=36+25k2144k^2 = 36 + 25k^2
144k2−25k2=36144k^2 - 25k^2 = 36
119k2=36119k^2 = 36
k2=36119k^2 = \frac{36}{119}
k=36119k = \sqrt{\frac{36}{119}}
k=6119k = \frac{6}{\sqrt{119}}
BC=5k=5×6119=30119BC = 5k = 5 \times \frac{6}{\sqrt{119}} = \frac{30}{\sqrt{119}}
AC=12k=12×6119=72119AC = 12k = 12 \times \frac{6}{\sqrt{119}} = \frac{72}{\sqrt{119}}
Chúng ta có thể tính toán lại bằng cách:
Suy ra: BC=512ACBC = \frac{5}{12} AC AC=12×65=14.4AC = \frac{12 \times 6}{5} = 14.4 BC=5×1.2=6BC = 5 \times 1.2 = 6
Suy ra:...
Đây là toán nâng cao chuyên đề phân số, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải dạng này bằng phương pháp giải ngược như sau:
Giải:
Ngày thứ hai nếu anh chỉ tiêu \(\dfrac{1}{2}\) số tiền mà không ủng hộ từ thiện thêm 60 000 đồng thì anh còn lại số tiền là:
0 + 60 000 = 60 000 (đồng)
60 000 đồng ứng với phân số là:
1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) (số tiền còn lại sau ngày thứ nhất)
Số tiền còn lại sau ngày thứ nhất là:
60 000 : \(\dfrac{1}{2}\) = 120 000 (đồng)
Nếu ngày thứ nhất anh tiêu thêm 20 000 đồng nữa thì số tiền còn lại là:
120 000 - 20 000 = 100 000 (đồng)
100 000 đồng ứng với phân số là:
1 - \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\) (số tiền)
Ban đầu anh có số tiền là:
100 000 : \(\dfrac{2}{3}\) = 150 000 (đồng)
Đáp số: 150 000 đồng.
\(x^2+5y^2+2y-4xy-3=0\\ \Rightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Rightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Mình nghĩ bạn thiếu đề nhé
Bổ sung đề: Tìm cặp x, y nguyên thỏa mãn
Với x, y nguyên hiển nhiên x-2y và y+1 nguyên
Mà: \(4=0^2+2^2=0^2+\left(-2\right)^2\)
Các trường hợp xảy ra:
TH1: y+1=0 và x-2y=2
=> y=-1 và x=0
TH2: y+1=0 và x-2y=-2
=> y=-1 và x=-4
TH3: y+1=2 và x-2y=0
=> y=1 và x=2
TH4: y+1=-2 và x-2y=0
=> y=-3 và x=-6
Vậy (x;y)=(0;-1);(-4;-1);(2;1);(-6;-3)
Số có 8 chữ số sẽ có dạng là \(\overline{abcdefgh}\)
chữ số hàng trăm nghìn là 3
=>c=3
Chữ số hàng nghìn là 6
=>e=6
Chữ số hàng chục là 5
=>g=5
=>Số cần tìm có dạng là \(\overline{ab3d6f5h}\)
=>Số lớn nhất sẽ là 99396959
Để số cần tìm lớn nhất có thể thì các chữ số phải là chữ số lớn nhất (số 9) trừ các chữ số đã cho trước.
Số cần tìm là: 99396959