Cho 81 điểm phân biệt nằm trong một hình vuông có cạnh bằng 1. Chứng minh rằng tồn tại 6 điểm trong các điểm đã cho nằm trong một đường tròn có bán kính bằng \(\frac{1}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không vẽ hình đc , sợ duyệt
a) Lấy \(E\)trên \(BC\)sao cho \(CDE=ADB\)
Tam giác \(CDE\)= tam giác \(ADB\left(g.g\right)\)
Tỉ số các đường cao tương đương với ứng bằng tỉ số đóng dạng :
\(\frac{DH}{DK}=\frac{CE}{AB}=\frac{x}{z}=\frac{CE}{c}=\frac{c}{z}=\frac{CE}{x}\left(1\right)\)
Tương tự \(\frac{b}{y}=\frac{BE}{x}\left(2\right)\)
Từ (1) và (2) ta suy ra : \(\frac{b}{y}+\frac{c}{z}=\frac{BE+CE}{x}=\frac{a}{x}\)
b) Xét S \(=\frac{a}{x}+\left(\frac{b}{y}+\frac{c}{z}\right)=\frac{a}{x}+\frac{a}{x}=\frac{2a}{x}\). Do đó :
S nhỏ nhất \(\frac{a}{x}\)nhỏ nhất = x lớn nhất = \(D=M\)( M là điểm chính giữa của cung BC không chứa A )
HT
Mệt
Trên mỗi hình vuông con, kích thước 2x2 chỉ có không quá 1 số chia hết cho 2, cũng vậy, có không quá 1 số chia hết cho 3
Lát kín bảng bởi 25 hình vuông, kích thước 2x2, có nhiều nhất 25 số chia hết cho 2, có nhiều nhất 25 số chia hết cho 3. Do đó, có ít nhất 50 số còn lại không chia hết cho 2, cũng không chia hết cho 3. Vì vậy, chúng phải là một trong các số 1,5,7.
Từ đó, theo nguyên lý Dirichlet, có một số xuất hiện ít nhất 17 lần.
trên nửa mặt phẳng bờ AM chứa điểm C vẽ tam giác đều AMN => MA=MN (1)
Vẽ ra ngoài tam giác ABC tam giác đều ACP
Bạn tự đi chứng minh tam giác AMC = tam giác ANP
=> MC=NP (2)
Từ (1) và (2) => MA+MB+MC=BM+MN+NP ≥≥BP (theo tính chất đường gấp khúc)
Dấu = xảy ra ⇔⇔B,M,N,P thẳng hàng
⇔⇔Góc AMB = Góc ANP =120 độ (vì AMN=ANM=60 độ)
⇔⇔AMB=AMC=120 (vì 2 tam giác chứng minh trên bằng nhau nên 2 góc AMC và ANP bằng nhau)
Trả lời
Em học lớp 9 lộn ngược ;-;
Chúc anh học tốt ạ
Đặt \(2000=a\)
\(A=a^9\\ B=\left(a-4\right)\left(a-3\right)\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\\ B=\left(a^2-16\right)\left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2.a^2=a^9\\ B=\left(a-8\right)\left(a-6\right)\left(a-4\right)\left(a-2\right)a\left(a+2\right)\left(a+4\right)\left(a+6\right)\left(a+8\right)\\ C=\left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a\\ C< \left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2=a^9\\ D=\left(a-20\right)\left(a-15\right)\left(a-10\right)\left(a-5\right)a\left(a+5\right)\left(a+10\right)\left(a+15\right)\left(a+20\right)\\ D=\left(a^2-400\right)\left(a^2-225\right)\left(a^2-100\right)\left(a^2-25\right)a\\ D< \left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a< a.a^2.a^2.a^2=9\)
Vậy \(D< C< B< A\)
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao AH const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\)
\(=\frac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\)
\(=\frac{1}{2}a\left(DM+ME+MF\right)\)
\(=\frac{1}{2}a.AH\)
\(=DM+ME+MF=AH\left(đpcm\right)\)