Tìm x:
|2x – 3| = |1 – x|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử tổng của số hữu tỉ a vs số vô tỉ b là số hữu tỉ c, ta có b=c-a
mà hiệu của 2 số hữu tỉ phải là số hữu tỉ nên b là số hữu tỉ => mâu thuẫn vs giả thiết
vậy tổng của 1 số hữu tỉ với 1 số vô tỉ là 1 số vô tỉ.
giả sử tổng của số hữu tỉ a vs số vô tỉ b là số hữu tỉ c, ta có b=c-a
mà hiệu của 2 số hữu tỉ phải là số hữu tỉ nên b là số hữu tỉ => mâu thuẫn vs giả thiết
vậy tổng của 1 số hữu tỉ với 1 số vô tỉ là 1 số vô tỉ.
Đặt \(A=a_1^2+a_2^2+...+a_n^2,B=n,C=a_1+a_2+...+a_n\)
Ta cần chứng minh \(AB\ge C^2\).
Dễ thấy nếu \(A=0\)hoặc \(B=0\)thì bất đẳng thức hiển nhiên đúng.
Xét với \(A,B\ne0\):
Với mọi \(x\)ta có:
\(\left(a_1x-1\right)^2\ge0\Leftrightarrow a_1^2x^2-2a_1x+1\ge0\)
\(\left(a_2x-1\right)^2\ge0\Leftrightarrow a_2^2x^2-2a_2x+1\ge0\)
...
\(\left(a_nx-1\right)^2\ge0\Leftrightarrow a_n^2x^2-2a_nx+1\ge0\)
Cộng từng vế của các bất đẳng thức trên lại ta có:
\(\left(a_1^2+a_2^2+...+a_n^2\right)x^2-2x\left(a_1+a_2+...+a_n\right)+n\ge0\)
thay \(x=\frac{C}{A}\)vào ta được:
\(A.\frac{C^2}{A^2}-2C.\frac{C}{A}+B\ge0\Leftrightarrow AB\ge C^2\)
Dấu \(=\)khi \(a_1=a_2=...=a_n\).
\(B=\sqrt{\left(1-\sqrt{5}\right)^2}+\sqrt{6+2\sqrt{5}}\)
\(=\left|1-\sqrt{5}\right|+\sqrt{5+2\sqrt{5}+1}\)
\(=\sqrt{5}-1+\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}-1+\sqrt{5}+1\)
\(=2\sqrt{5}\)
em tự vẽ hình nha
Gọi O là trung điểm của AM
Vì tam giác AHM vuông tại H có O là trung điểm cạnh huyền AM
=> OH=OA=OM (1)
CMTT: OA=OM=OE (2)
Vì \(\hept{\begin{cases}MD\perp AB\\ME\perp AC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{MDA}=90^0\\\widehat{MEA}=90^0\end{cases}}\)
Xét tứ giác ADME có:
góc A= góc MDA = góc MEA = 90 độ
=> ADME là hình chữ nhật ( dhnb )
=> 2 đường chéo DE và AM cắt nhau tại trung điểm mỗi đường và DE=AM
Mà O là trung điểm AM
=> O là trung điểm DE
=> OD=OE (3)
Từ (1), (2) và (3) => OD=OE=OA=OM=OH
=> A,D,H,M,F cùng nằm trên 1 đường tròn
do tam giác vuông cân nội tiếp đường tròn => đường kính = độ dài cạnh huyền của tam giác vuông cân
bình phương cạnh huyền = tổng bình phương 2 cạnh góc vuông
=> bình phương cạnh huyền = 18
=> độ dài cạnh huyền = đường kính = \(3\sqrt{2}\)
=> bán kính = \(\frac{3\sqrt{2}}{2}\)
Đặt \(\sqrt[3]{a-b}=x,\sqrt[3]{b-c}=y,\sqrt[3]{c-a}=z\)
suy ra \(x^3+y^3+z^3=0\)
Ta có hằng đẳng thức:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
mà \(x+y+z=0\)
suy ra \(-3xyz=0\)
Khi đó \(x=0\)hoặc \(y=0\)hoặc \(z=0\)
suy ra \(a=b\)hoặc \(b=c\)hoặc \(c=a\).
Với mỗi trường hợp ta đều suy ra \(a=b=c\).
\(\left|2x-3\right|=\left|1-x\right|\)
TH1 : \(2x-3=1-x\Leftrightarrow3x=4\Leftrightarrow x=\frac{4}{3}\)
TH2 : \(2x-3=x-1\Leftrightarrow x=2\)
i don nau