moi nguoi giup minh voi \(2020-\sqrt{x^2-2x+1}=1\)1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PTHH
\(Fe_3O_4+HCl->FeCl_2+FeCl_3+H_2O\)
\(KHCO_3+NaOH->K_2CO_3+Na_2CO_3+H_2O\)
\(Fe+FeCl_3->FeCl_2\)
\(C+H_2SO_{4đn}->CO_2+H_2O+SO_2\)
tự cân bằng pt
a) Xét ΔEAM và ΔNAD có
AE=AN(gt)
ˆEAM=ˆNADEAM^=NAD^(hai góc đối đỉnh)
AM=AD(A là trung điểm của MD)
Do đó: ΔEAM=ΔNAD(c-g-c)
Suy ra: ME=ND(Hai cạnh tương ứng)
Ta có:
\(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\text{ Vì thế, }A=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...-\frac{1}{\sqrt{401}}< 1.\)
\(\frac{1}{\sqrt{2}}\)+ \(\frac{1}{\sqrt{3}}\)+ \(\frac{1}{\sqrt{4}}\)+ ......... + \(\frac{1}{\sqrt{400}}\)\(< 38\)
Ta chứng minh \(\frac{1}{k}\)\(< \frac{2}{\sqrt{k}\sqrt{k-1}}\)với mọi với mọi \(k\text{∈}N\cdot,k>2\)
Gỉa sử
\(\frac{1}{k}< \frac{2}{\sqrt{k}\sqrt{k-1}}\)\(k\text{∈}N\cdot,k>2\)
\(=\sqrt{k}+\sqrt{k-1}< 2\sqrt{k}=\sqrt{k-1}< \sqrt{k}< k-1< k\)
Khi đó ta có :
\(\frac{1}{\sqrt{k}}\)\(< \frac{2}{\sqrt{k}\sqrt{k-1}}\)\(< \frac{2\left(\sqrt{k}\sqrt{k-1}\right)}{k-\left(k-1\right)}\)\(=2\left(\sqrt{k}\sqrt{k-1}\right)\)
\(VT\left(\cdot\right)< 2\left(\sqrt{2}+\sqrt{1}+\sqrt{3}-\sqrt{2}+......+\sqrt{400}-\sqrt{399}\right)\)
\(VT\left(\cdot\right)< 2\left(\sqrt{400}-1\right)=2.\left(20-1\right)=38\left(dpcm\right)\)
\(2020-\sqrt{x^2-2x+1}=1\Leftrightarrow2020-\sqrt{\left(x-1\right)^2}=1\)
\(\Leftrightarrow2020-\left|x-1\right|=1\Leftrightarrow\left|x-1\right|=2019\)
TH1 : \(x-1=2019\Leftrightarrow x=2020\)
TH2 : \(x-1=-2019\Leftrightarrow x=-2018\)