K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: x<>2

\(\dfrac{3x+1}{x-2}-\dfrac{3x}{x-2}=\dfrac{3x+1-3x}{x-2}=\dfrac{1}{x-2}\)

b: ĐKXĐ: \(x\ne0;x\ne-y\)
\(\dfrac{x+2}{x^2+xy}-\dfrac{2-y}{x^2+xy}\)

\(=\dfrac{x+2-2+y}{x\left(x+y\right)}=\dfrac{x+y}{x\left(x+y\right)}=\dfrac{1}{x}\)

13 tháng 6 2024

Ta có:

\(A=x^6-3x^5+4x^4-3x^3+2x^2-x+1\) 

\(=\left(x^6-3x^5+3x^4-1\right)+\left(x^4-2x^3+x^2\right)+\left(x^2-x\right)+1\)

\(=\left(x^2-x\right)^3+\left(x^2-x\right)^2+\left(x^2-x\right)+1\)

Thay `x^2-x=10` vào A ta có:

\(A=10^3+10^2+10+1=1111\)

13 tháng 6 2024

A = x⁶ - 3x⁵ + 4x⁴ - 3x³ + 2x² - x + 1

= (x⁶ - x⁵) - 2x⁵ + 2x⁴ + 2x⁴ - 2x³ - x³ + x² + x² - x + 1

= x⁴(x² - x) - 2x³(x² - x) + 2x²(x² - x) - x(x² - x) + (x² - x) + 1

= (x² - x)(x⁴ - 2x³ + 2x² - x) + 1

= 10(x⁴ - x³ - x³ + x² + x² - x) + 1

= 10[x²(x² - x) - x(x² - x) + (x² - x)] + 1

= 10(x² - x)(x² - x + 1) + 1

= 10.10.(10 + 1) + 1

= 100.11 + 1

= 1100 + 1

= 1101

13 tháng 6 2024

\(x^4+6x^3+7x^2-6x+1\)

\(=x^4+9x^2+1+6x^3-2x^2-6x\)

\(=\left(x^2\right)^2+\left(3x\right)^2+\left(-1\right)^2+2\cdot x^2\cdot3x+2\cdot x^2\cdot\left(-1\right)+2\cdot3x\cdot\left(-1\right)\)

\(=\left(x^2+3x-1\right)^2\)

---------------------

Áp dụng hằng đẳng thức: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)

Trong trường hợp này `a=x^2; b=3x; c=-1` 

13 tháng 6 2024

20.

a) \(A=4x^2-4x+m\)

\(=4x^2-4x+1-1+m\)

\(=\left(4x^2+4x+1\right)+\left(m-1\right)\)

\(=\left(2x+1\right)^2+\left(m-1\right)\)

Để biếu thức không âm thì \(A\ge0\Rightarrow\left(2x+1\right)^2+\left(m-1\right)\ge0\)

Mà: \(\left(2x+1\right)^2\ge0\)

\(\Rightarrow\) Để \(A\ge0\Rightarrow m-1\ge0\Leftrightarrow m\ge1\) 

b) \(B=x^2-6x+2-m\)

\(=x^2-6x+9-9+2-m\)

\(=\left(x^2+6x+9\right)+\left(2-m-9\right)\)

\(=\left(x+3\right)^2+\left(-m-7\right)\)

Để bt không âm thì \(B\ge0\Rightarrow\left(x+3\right)^2+\left(-m-7\right)\ge0\)

Mà: \(\left(x+3\right)^2\ge0\)

⇒ Để \(B\ge0\Rightarrow-m-7\ge0\Leftrightarrow-m\ge7\Leftrightarrow m\le-7\) 

13 tháng 6 2024

Câu 16:

a) Số chính phương lẻ có dạng: \(\left(2x+1\right)^2=4x^2+4x+1=4x\left(x+1\right)+1\) 

Vì \(x\in N\Rightarrow x\left(x+1\right)\) là tích của 2 số tự nhiên liên tiếp

\(\Rightarrow x\left(x+1\right)\) ⋮ 2 

\(\Rightarrow4x\left(x+1\right)\) ⋮ 8

\(\Rightarrow4x\left(x+1\right)+1\) chia 8 dư 1 

b)  Theo câu a ta biết số chính phương lẻ chia 8 sẽ dư 1 mà `1^2;3^2;5^2;7^2;...;2023^2` đều là các số tự nhiên lẻ ⇒ Chúng đều chia 8 dư 1 

Từ 1 đến 2023 có số lượng số lẻ là: \(\left(2023-1\right):2+1=1012\) (số) 

Khi đó `1^2+3^2+5^2+...+2023^2` chia 8 dư `1*1012=1012` 

Mà: 1012 chia 8 dư 4 ⇒ Tổng `1^2+3^2+5^2+...+2023^2` chia 8 dư 4 

loading... 

1
13 tháng 6 2024

\(a^3+4a^2-29a+24\)

\(=a^3-a^2+5a^2-5a-24a+24\)

\(=a^2\left(a-1\right)+5a\left(a-1\right)-24\left(a-1\right)\)

\(=\left(a-1\right)\left(a^2+5a-24\right)\)

\(=\left(a-1\right)\left(a^2-3a+8a-24\right)\)

\(=\left(a-1\right)\left[a\left(a-3\right)+8\left(a-3\right)\right]\)

\(=\left(a-1\right)\left(a-3\right)\left(a+8\right)\)

13 tháng 6 2024

đề sai rồi nha viết lại nhé 

`#3107.101107`

Ta có: `\sqrt{50} + \sqrt{65} - \sqrt{16} > \sqrt{49} + \sqrt{64} - \sqrt{16} = 7 + 8 + 4 = 19`

Mà `\sqrt{120} < \sqrt{361} (= 19)`

`\Rightarrow \sqrt{50} + \sqrt{65} - \sqrt{16} > \sqrt{120}`

Bảo mình chép mạng thì lên mạng mà tìm xem có đáp án dở ra ngay trước mặt không? Mà biết thì cũng kệ bạn chứ ai hỏi. Người tiếp xúc qua 2 3 cái màn hình mà làm như kiểu sống dưới gầm dường người khác vậy bạn, bạn nghĩ bạn đủ tư cách để buộc tội mình á? Xin lỗi nha, tới khi nào mình thấy bạn có danh phận ảnh hưởng, có bằng chứng rõ ràng thì lại mở miệng. Kể cả người khác sống trong nhà mình họ còn chưa chắc chắn, bạn lấy điều gì mà tự tin với mấy câu nói vu vơ vậy thế :D? Mà việc mình làm tự bản thân mình cũng biết, chưa cần đến lượt bạn phải nói. Sau bớt bình luận vô duyên giúp, ảnh hưởng noti người khác lắm. Cũng chả ai cần đâu. Đúng vô duyên luôn.

\(\left(2x-3\right)^2-\left(x-5\right)\left(4x^2-1\right)=7x+6\)

=>\(4x^2-12x+9-\left(4x^3-x-20x^2+5\right)=7x+6\)

=>\(4x^2-12x+9-4x^3+20x^2+x-5-7x-6=0\)

=>\(-4x^3+24x^2-18x-2=0\)

=>\(-4x^3+4x^2+20x^2-20x+2x-2=0\)

=>\(-4x^2\left(x-1\right)+20x\left(x-1\right)+2\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(-4x^2+20x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\-4x^2+20x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5\pm3\sqrt{3}}{2}\end{matrix}\right.\)

11 tháng 6 2024

mong các bạn giúp đỡ 

ngày 12/6 là mình đi học rồi vào buổi sáng

 

11 tháng 6 2024

c) \(\dfrac{x-2}{x-1}+\dfrac{6}{x^2-x}\)

\(=\dfrac{x\left(x-2\right)}{x\left(x-1\right)}+\dfrac{6}{x\left(x-1\right)}\)

\(=\dfrac{x^2-2x+6}{x\left(x-1\right)}\)

\(=\dfrac{x^2-2x+6}{x^2-x}\) 

d) \(\dfrac{x+1}{x^2-4}-\dfrac{1}{x^2+2x}\)

\(=\dfrac{x+1}{\left(x+2\right)\left(x-2\right)}-\dfrac{1}{x\left(x+2\right)}\)

\(=\dfrac{x\left(x+1\right)}{x\left(x+2\right)\left(x-2\right)}-\dfrac{x-2}{x\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x^2+x-x+2}{x\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x^2+2}{x\left(x^2-4\right)}\)

\(=\dfrac{x^2+2}{x^3-4x}\)