Giải phương trình (x-2)2 / 3 - (2x-3)(2x+3)/8 +(x-4)2/6 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b; (\(x^3\) - 1)(\(x^3\) - 10)(\(x^3\) - 30)(\(x^3\) - 70) < 0
Đặt \(x^3\) = t
Khi đó: T = (t - 1)(t - 10)(t - 30)(t - 70) < 0
Lập bảng xét dấu ta có:
t | 1 10 30 70 |
t - 1 | - 0 + + + + |
t - 10 | - - 0 + + + |
t - 30 | - - - 0 + + |
t - 70 | - - - - 0 + |
T = (t - 1).(t - 10).(t - 30).(t - 70) | + 0 - 0 + 0 - 0 + |
Theo bảng trên ta có:
1 < t < 10 hoặc 30 < t < 70
⇒ 1 < \(x^3\) - 1 < 10 ⇒ 2 < \(x^3\) < 11
Vì \(x\) nguyên nên \(x\)3 = 8 ⇒ \(x^3\) = 23 ⇒ \(x=2\)
30 < t < 70
30 < \(x^3\) - 1 < 70
31 < \(x^3\) < 71
Vì \(x\) nguyên nên \(x^3\) = 64
⇒ \(x^3\) = 43 ⇒ \(x\) = 4
Vậy \(x\) \(\in\) {2; 4}
Số thập phân hữu hạn, số hữu tỉ là những số có thể viết dưới dạng: \(\dfrac{a}{b}\) trong đó a; b \(\in\) Z; b ≠ 0
Số vô tỉ là số không thể viết dưới dạng \(\dfrac{a}{b}\) trong đó a; b \(\in\) Z; b \(\ne\) 0
Nếu chọn hàng nghìn sẽ có 4 cách chọn : 1,4,5,9
Giả sử chọn hàng nghìn là 1 thì nếu chọn hàng trăm sẽ có 4 cách chọn : 0,5,4,9
Giả sử chọn hàng trăm là 0 thì nếu chọn hàng chục sẽ có 3 cách chọn : 5,4,9
Giả sử chọn hàng chục là 5 thì hàng đơn vị sẽ có 2 cách chọn : 4,9
Vậy có thể lập được số số có 4 chữ số khác nhau là : 4x4x3x2=96 số
Ko chắc đâu
Số số hạng dãy trên là:
(99-3):2+1=49 (số hạng)
Tổng dãy trên là:
(99+3).49:2=2499
Ta có: x+(x+3)+(x+5)+...+(x+99)=2599
=> (x+x+x+...+x)+(3+5+...+99)=2599
50x + 2499=2599
50x = 100
x=2
Bổ sung cho @ Huy Hoàng Vũ
Xét dãy số: 3; 5; 7; ... ; 99
Dãy số này là dãy số cách đều với khoảng cách là:
3 - 5 = 2
Làm tiếp như Huy Hoàng Vũ em nhé.
Lời giải:
Tính xác suất để lấy được viên bi màu trắng? Ý bạn là lấy được 2 viên bi đều là màu trắng.
Tổng số bi: $6+8+3+3=20$ (viên)
Chọn 2 viên bi bất kỳ, có $C^2_{20}$ cách
Chọn 2 viên bi mà 2 viên đều màu trắng, có $C^2_3=3$ (cách)
Xác suất: $\frac{3}{C^2_{20}}=\frac{3}{190}$
Số viên bi trong hộp là :
6 + 8 + 3 + 3 = 20 (viên bi)
Số cách chọn 2 viên bi từ 20 viên là :
\(\dfrac{20!}{2!\left(20-2\right)!}\) = \(\dfrac{20.19}{2.1}\)=190
Ta có 2 trường hợp :
Trường hợp 1 : 1 viên trắng và 1 viên khác màu
Số cách chọn 1 viên bi màu trắng từ 3 viên: 3
Số cách chọn 1 viên bi khác màu từ 17 viên bi còn lại (không phải màu trắng): 17
Số cách lấy 1 viên màu trắng và 1 viên khác màu: 3.17=51
Trường hợp 2: Cả 2 viên bi đều là màu trắngSố cách chọn 2 viên bi từ 3 viên màu trắng:
\(\dfrac{3.2}{2.1}\)=3
Tổng số cách có ít nhất 1 viên bi màu trắng là: 51+3=54
Xác suất để lấy được ít nhất 1 viên bi màu trắng: \(\dfrac{54}{190}\) = 27/95 ≈ 0,2842
Vậy xác suất để lấy được ít nhất 1 viên bi màu trắng là khoảng 28,42%
Lời giải:
$(2x+y)^2+7a(2x+y)+10a^2$
$=(2x+y)^2+2a(2x+y)+5a(2x+y)+10a^2$
$=(2x+y)(2x+y+2a)+5a(2x+y+2a)$
$=(2x+y+2a)(2x+y+5a)$
Ý bạn muốn phân tích đa thức $(2x+y)^2+7a(2x+y)+10a^2$ thành nhân tử?
\(\dfrac{\left(x-2\right)^2}{3}-\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}+\dfrac{\left(x-4\right)^2}{6}=0\)
=>\(\dfrac{8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2}{24}=0\)
=>\(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)
=>\(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
=>-64x+123=0
=>\(x=\dfrac{123}{64}\)