Cho a,b,c,x,y,z thỏa mãn a+b+c=a2+b2+c2=1 và x/a=y/b=z/c.Chứng minh rằng:x2+y2+z2=(x+y+z)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số tiền nhận được là:
70000000/100*(100+x)(đồng)
b: Số tiền nhận được là:
70000000/100*(x+101,2)(đồng)
like cho tớ nhé chúc bạn học tốt nè !
Gọi số máy cày của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là
\(x\), \(y\), \(z\) (\(x\), \(y\), \(z\) \(\in\) N*)
Theo bài ra ta có : 3\(x\) = 4y = 6z và \(x\) - y = 2
3\(x\) = 4y ⇒ \(\dfrac{x}{4}\) = \(\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}\) = \(\dfrac{y}{3}=\dfrac{x-y}{4-3}\) = \(\dfrac{2}{1}\) = 2
⇒ \(x\) = 2 \(\times\) 4 = 8
⇒ \(y\) = 2 \(\times\) 3 = 6
4\(y\) = 6\(z\) ⇒ \(z=\) \(\dfrac{4y}{6}\) = \(\dfrac{2y}{3}\)
Thay \(y\) = 6 vào biểu thức \(z\) = \(\dfrac{2y}{3}\) ⇒ \(z\) = \(\dfrac{2.6}{3}\) = 4
Vậy đội thứ nhất có 8 máy, đội thứ hai có 6 náy, đội thứ ba có 4 máy.
Lời giải:
$B=|\frac{(a-c)(b-a)(b+c)}{abc}|$
Do $a-b-c=0$ nên: $b-a=-c; a-c=b; b+c=a$
$\Rightarrow (a-c)(b-a)(b+c)=b(-c)a=-abc$
$\Rightarrow B=|\frac{-abc}{abc}|=|-1|=1$
xét △ABM và △ACM có
AB=AC (theo giả thiết)
\(\widehat{B}\) = \(\widehat{C}\) (theo giả thiết)
MB=MC (theo giả thiết)
⇒△ABM=△ACM (c.g.c)
⇒\(\widehat{AMB}\) = \(\widehat{AMC}\) (hai góc tương ứng)
ABC
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{a^2}\) = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)
\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\))2 (2)
Từ (1) và (2) ta có :
\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)
ax=by=cz ⇒ �2�2=�2�2=�2�2a2x2=b2y2=c2z2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
�2�2a2x2 = �2�2b2y2 = �2�2c2z2 = �2+�2+�2�2+�2+�2a2+b2+c2x2+y2+z2 = �2+�2+�211x2+y2+z2 = �2+�2+�2x2+y2+z2 (1)
��=��=��ax=by=cz Áp dụng tính chất dãy tỉ số bằng nhau ta có:
��=��=��=�+�+��+�+�ax=by=cz=a+b+cx+y+z = �+�+�11x+y+z = �+�+�x+y+z
��ax = �+�+�x+y+z ⇒ �2�2a2x2 = (�+�+�x+y+z)2 (2)
Từ (1) và (2) ta có :
�2�2a2x2 = �2x2 + y2 + z2 = ( �+�+�x+y+z)2 (đpCm)