Cho nửa đường tròn tâm O đường kính AB, M là một điểm bất kỳ thuộc nửa đường tròn (M khác A, B). Tiếp tuyến tại M cắt các tiếp tuyến Ax và By của nửa đường tròn đó lần lượt tại C và D.
a) AC + BD =CD
b) Tam giác COD là tam giác vuông
c) OM^2 =MC MD
d) Tìm vị trí của điểm M trên nửa đường tròn (O) sao cho CD nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=\dfrac{1}{1000}+\dfrac{1}{1002}+\dfrac{1}{1004}+...+\dfrac{1}{2000}\)
\(2M=\dfrac{1}{500}+\dfrac{1}{501}+\dfrac{1}{502}+...+\dfrac{1}{1000}\)
\(2M< \dfrac{1}{500}+\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}=\dfrac{500}{500}=1\)
\(M< \dfrac{1}{2}\)

Bài 4:
d:
ĐKXĐ: \(x\notin\left\{1;-1;2;-2\right\}\)
\(\dfrac{x+4}{x-1}+\dfrac{x-4}{x+1}=\dfrac{x+8}{x-2}+\dfrac{x-8}{x+2}+6\)
=>\(\dfrac{\left(x+4\right)\left(x+1\right)+\left(x-4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+8\right)\left(x+2\right)+\left(x-8\right)\left(x-2\right)+6\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>\(\dfrac{2x^2+8}{\left(x-1\right)\left(x+1\right)}=\dfrac{2x^2+32+6x^2-24}{\left(x-2\right)\left(x+2\right)}\)
=>\(\dfrac{2x^2+8}{x^2-1}=\dfrac{8x^2+8}{x^2-4}\)
=>\(\left(2x^2+8\right)\left(x^2-4\right)=\left(8x^2+8\right)\left(x^2-1\right)\)
=>\(2x^4-32=8x^4-8\)
=>\(-6x^4=24\)
=>\(x^4=-4\left(loại\right)\)
Vậy: Phương trình vô nghiệm
c:
ĐKXĐ: \(x\notin\left\{-1;-3;-8;-10\right\}\)
\(\dfrac{2}{x^2+4x+3}+\dfrac{5}{x^2+11x+24}+\dfrac{2}{x^2+18x+80}=\dfrac{9}{52}\)
=>\(\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{5}{\left(x+3\right)\left(x+8\right)}+\dfrac{2}{\left(x+8\right)\left(x+10\right)}=\dfrac{9}{52}\)
=>\(\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+10}=\dfrac{9}{52}\)
=>\(\dfrac{1}{x+1}-\dfrac{1}{x+10}=\dfrac{9}{52}\)
=>\(\dfrac{9}{\left(x+1\right)\left(x+10\right)}=\dfrac{9}{52}\)
=>(x+1)(x+10)=52
=>\(x^2+11x-42=0\)
=>(x+14)(x-3)=0
=>\(\left[{}\begin{matrix}x=-14\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)
b:
ĐXKĐ: \(x\notin\left\{-2;-3;-4;-5;-6\right\}\)\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
=>\(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
=>\(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
=>\(\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
=>\(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
=>(x+2)(x+6)=32
=>\(x^2+8x-20=0\)
=>(x+10)(x-2)=0
=>\(\left[{}\begin{matrix}x=-10\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
a: \(\dfrac{x^2}{x^2+2x+2}+\dfrac{x^2}{x^2-2x+2}-\dfrac{4x^2-20}{x^4+4}=\dfrac{322}{65}\)
=>\(\dfrac{x^2\left(x^2-2x+2\right)+x^2\left(x^2+2x+2\right)-4x^2+20}{\left(x^2+2x+2\right)\left(x^2-2x+2\right)}=\dfrac{322}{65}\)
=>\(\dfrac{x^4-2x^3+2x^2+x^4+2x^3+2x^2-4x^2+20}{x^4+4}=\dfrac{322}{65}\)
=>\(\dfrac{2x^4+20}{x^4+4}=\dfrac{322}{65}\)
=>\(322\left(x^4+4\right)=65\left(2x^4+20\right)\)
=>\(322x^4+1288-130x^4-1300=0\)
=>\(192x^4=12\)
=>\(x^4=\dfrac{1}{16}\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\left(nhận\right)\\x=-\dfrac{1}{2}\left(nhận\right)\end{matrix}\right.\)

Bạn bấm vào biểu tượng để nhập các công thức toán học cho rõ ràng nhé!
Vd:\(3^{10}\)

Lấy điểm A bất kì nằm trên đường tròn đáy.
Khi đó góc tạo bởi đường sinh và mặt phẳng đáy chính là \(\widehat{SAO}=45^o\)
Do đó \(h=r=\dfrac{a}{\sqrt{2}}\)
\(\Rightarrow S_{xq}=\pi rl=\pi.\dfrac{a}{\sqrt{2}}.a=\dfrac{\pi a^2}{\sqrt{2}}\)
\(S_{tp}=S_{xq}+\pi r^2=\dfrac{\pi a^2}{\sqrt{2}}+\pi\left(\dfrac{a}{\sqrt{2}}\right)^2=\dfrac{\pi a^2\sqrt{2}+\pi a^2}{2}\)

Thay n = 100 vào biểu thức , ta được;
\(N=156-224:100\)
\(=156-22,4\)
\(=133,6\)

222 + 333 - 111 - 444 + 111
= 555 - 111 - 444 + 111
= 444 - 444 + 111
= 0 + 111
= 111

a/
$\frac{1}{x}+\frac{1}{y}=\frac{1}{5}$
$\Rightarrow \frac{x+y}{xy}=\frac{1}{5}$
$\Rightarrow 5(x+y)=xy$
$\Rightarrow 5x+5y-xy=0$
$\Rightarrow x(5-y)+5y=0$
$\Rightarrow x(5-y)-5(5-y)=-25$
$\Rightarrow (x-5)(5-y)=-25$
$\Rightarrow (x-5)(y-5)=25$
Do $x,y$ nguyên nên $x-5,y-5$ nguyên. Mà tích $(x-5)(y-5)=25$ nên xảy ra các TH sau đây:
TH1: $x-5=1, y-5=25\Rightarrow x=6; y=30$
TH2: $x-5=-1, y-5=-25\Rightarrow x=4; y=-20$
TH3: $x-5=25, y-5=1\Rightarrow x=30; y=6$
TH4: $x-5=-25, y-5=-1\Rightarrow x=-20; y=4$
TH5: $x-5=5, y-5=5\Rightarrow x=10; y=10$
TH6: $x-5=-5, y-5=-5\Rightarrow x=0; y=0$
b/
$\frac{2}{x}+\frac{1}{y}=3$
$\Rightarrow \frac{x+2y}{xy}=3$
$\Rightarrow x+2y=3xy$
$\Rightarrow 3xy-x-2y=0$
$\Rightarrow x(3y-1)-2y=0$
$\Rightarrow 3x(3y-1)-6y=0$
$\Rightarrow 3x(3y-1)-2(3y-1)=2$
$\Rightarrow (3x-2)(3y-1)=2$
Do $x,y$ nguyên nên $3x-2, 3y-1$ cũng là số nguyên. Mà tích của chúng bằng 2 nên ta xét các TH sau:
TH1: $3x-2=1, 3y-1=2\Rightarrow x=y=1$
TH2: $3x-2=2, 3y-1=1\Rightarrow x=\frac{4}{3}$ (loại)
TH3: $3x-2=-1, 3y-1=-2\Rightarrow x=\frac{1}{3}$ (loại)
TH4: $3x-2=-2, 3y-1=-1\Rightarrow x=y=0$ (loại do $x,y\neq 0$)
Vậy $x=y=1$
a: Xét (O) có
CM,CA là các tiếp tuyến
Do đó: CM=CA và OC là phân giác của góc MOA
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
AC+BD
=CM+MD
=CD
b: \(\widehat{COD}=\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)
\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot\widehat{AOB}=90^0\)
=>ΔCOD vuông tại O
c: Xét ΔCOD vuông tại O có OM là đường cao
nên \(OM^2=MC\cdot MD\)
giúp tôi ý d với bạn ơi