K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

1)

Ta có : \(5-2x< 3+x\)

\(\Leftrightarrow-2x-x< 3-5\)

\(\Leftrightarrow-3x< -2\)

\(\Leftrightarrow x>\frac{2}{3}\)

Vậy bất phương trình có tập nghiệm  \(\left\{x/x>\frac{2}{3}\right\}\)

20 tháng 4 2018

2)

Ta có : \(a^2+b^2+2-2\left(a+b\right)\)

\(=a^2+b^2+2-2a-2b\)

\(=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)

\(=\left(a-1\right)^2+\left(b-1\right)^2\)

Mà : \(\left(a-1\right)^2\ge0\forall a\)

        \(\left(b-1\right)^2\ge0\forall b\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\forall a;b\) ( luôn đúng )

\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\left(đpcm\right)\)

Vậy  \(a^2+b^2+2\ge2\left(a+b\right)\)

20 tháng 4 2018

Ai bit chỉ mk vs

20 tháng 4 2018

Bài 3 : 

\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)

\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)

\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)

Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)

Nên \(x-2017=0\)

\(\Rightarrow\)\(x=2017\)

Vậy \(x=2017\)

Chúc bạn học tốt ~ 

20 tháng 4 2018

Bài 1 : 

\(\left(8x-5\right)\left(x^2+2014\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)

Vậy \(x=\frac{5}{8}\)

Chúc bạn học tốt ~ 

20 tháng 4 2018

Ta có:

\(x^2+y^2+z^2-4x+2y+6z\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+\) \(\left(z^2+6z+9\right)\)

\(=\left(x-2\right)^2+\left(y+1\right)^2+\left(z+3\right)^2\)

Mà : \(\left(x-2\right)^2\ge0\forall x\)

        \(\left(y+1\right)^2\ge0\forall y\)

          \(\left(z+3\right)^2\ge0\forall z\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z+3\right)^2\ge0\forall x;y;z\) ( luôn đúng )

\(\Rightarrow x^2+y^2+z^2+14\ge4x-2y-6z\left(đpcm\right)\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2=0\\y+1=0\\z+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\\z=-3\end{cases}}\)

Vậy ....

19 tháng 8 2019

Do hai con chim vồ mồi cùng 1 lúc và với cùng một vận tốc nên quãng đường bay của 2 con pải như nhau

Gọi khoảng cách của con cá tới 2 gốc cây lần lượt là x,y(x,y>0)

Khoảng cách bay của con 1 là : \(\sqrt{20^2+x^2}\)\

Khoảng cách bay của con thứ 2 là \(\sqrt{30^2+y^2}\)

Do khoảng cách bằng nhau nên ta có pt:

\(\sqrt{30^2+y^2}=\sqrt{20^2+x^2}\)

\(\Leftrightarrow500=x^2-y^2=\left(x+y\right)\left(x-y\right)\)

\(\Leftrightarrow500=50\left(x-y\right)\)(do x+y=50)

\(\Leftrightarrow x-y=10\)

\(\Rightarrow\hept{\begin{cases}x+y=50\\x-y=10\end{cases}\Rightarrow x=30,y=20}\)

Vậy con trên cây cao 30 m có gốc cây cách con cá 20m

      con trên cây cao 20m có gốc cây cách con cá 30m