Ai giải giúp mình với
a ) (-0,2) mũ 2 x 5 - 2 mũ 13 x 27 mũ 3 phần 4 mũ 6 x 9 mũ 5
b) 5 mũ 6 + 2 mũ 2 x 25 mũ 3 + 2 mũ 3 x 125 mũ 2 phần 26. 5 mũ 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4.25-12.5+170:10
=100-60+17
=40+17
=57
b) (7+33:32).4-3
=(7+3).4-3
=10.4-3
=40-3
=37
c) 12:{400:[500-(125+25.7)]}
=12:{400:[500-(125+175)]}
=12:{400:[500-300]}
=12:{400:200}
=12:2
=6
d) 168+{[2.(24+32)-2560]:72}
=168+{[2.(16+9)-1]:49}
=168+{[2.25-1]:49}
=168+{[50-1]:49}
=168+{49:49}
=168+1
=169
Giả sử ta đặt g(x)=f(x)-f(-x)<=> g(x) là đa thức dạng ax3+bx2+cx+d
Hay mặt khác ta có:
g(1)=f(1)-f(-1)=0
g(-1)=f(-1)-f(1)=0
g(-2)=f(-2)-f(2)=0
g(2)=f(2)-f(-2)=0
=> Từ 4 cái trên g(x) là đa thức bậc không quá 3 mà có 4 nghiệm khác nhau -2;-1;1;2
=> Điều đó không là điều không thể (vô lý)
Vậy phải có a=0; b=0; c=0 và d=0 thì mới có thể xảy ra
<=> f(x)=f(-x) với \(\forall\) x
a-3b/2=5a-6b/3
=>a-5a=-6b/3+3b/2
=>-4a=-b/2
Nhân cả 2 vế với -2,ta được:
8a=b
p=a2+32/b2+72
Thay a=8a vào
p=(8a)2+32/(8a)2+72=64a2+9/64a2+49
Vậy kết quả của p là:64a2+9/64a2+49
A) \(...=\left(7y-3\right)^3\)
B) \(...=\left(4y-3\right)^3\)
C) \(...=x^4+2x^2+1-\left(y^2+2y+1\right)\)
\(=\left(x^2+1\right)^2-\left(y+1\right)^2\)
D) \(...=x^2-6x+9-\left(y^2-10y+25\right)\)
\(=\left(x-3\right)^2-\left(y-5\right)^2\)
Lời giải:
$3x-2y+6xy=1$
$\Rightarrow (3x+6xy)-(2y+1)=0$
$\Rightarrow 3x(1+2y)-(2y+1)=0$
$\Rightarrow (1+2y)(3x-1)=0$
$\Rightarrow 1+2y=0$ hoặc $3x-1=0$
$\Rightarrow y=\frac{-1}{2}$ hoặc $x=\frac{-1}{3}$ (vô lý vì $x,y$ là số nguyên)
Vậy không tồn tại $x,y$ thỏa mãn đề.
a, -(-12) + (+19) - (+12) + 8 - 19
= 12 + 19 - 12 + 8 - 19
= ( 12 - 12) + ( 19- 19) + 8
= 0 + 0 + 8
= 8
b, (59 - 78) - (42 - 78 + 59)
= 59 - 78 - 42 + 78 - 59
= (59 - 59) - 42 - ( 78 - 78)
= 0 - 42 - 0
= -42
c, ( - 68 + 103) - (-50 - 68 + 103)
= -68 + 103 + 50 + 68 - 103
= (-68 + 68) + ( 103 - 103) + 50
= 0 + 0 + 50
= 50
a) \(...=12+19-12+8-19=8\)
b) \(...=-19-23=-42\)
c) \(...=35-\left(-15\right)=35+15=50\)
`@` `\text {Ans}`
`\downarrow`
\(3^2\cdot2^5\cdot\left(\dfrac{2}{3}\right)^2\)
`=`\(\left(3\cdot\dfrac{2}{3}\right)^2\cdot2^5\)
`=`\(2^2\cdot2^5=2^7\)
\(3^2\cdot2^5\cdot\left(\dfrac{2}{3}\right)^2\)
\(=2^5\cdot\left(3\cdot\dfrac{2}{3}\right)^2\)
\(=2^5\cdot\left(\dfrac{3\cdot2}{3}\right)^2\)
\(=2^5\cdot2^2\)
\(=2^{2+5}\)
\(=2^5\)
Ta có:
`x : y : z = 3 : 8 : 5`
`\Rightarrow `\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\)
`\Rightarrow `\(\dfrac{3x}{9}=\dfrac{y}{8}=\dfrac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{9}=\dfrac{y}{8}=\dfrac{2z}{10}=\dfrac{3x+y-2z}{9+8-10}=\dfrac{14}{7}=2\)
`\Rightarrow`\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}=2\)
`\Rightarrow`
`x = 3.2 = 6`
`y = 8.2 = 16`
`z = 5.2 = 10`
Vậy, `x = 6; y = 16; z = 10.`
a, (-0,2)2 \(\times\) 5 - \(\dfrac{2^{13}\times27^3}{4^6\times9^5}\)
= 0,04 \(\times\) 5 - \(\dfrac{2^{13}\times3^9}{2^{12}\times3^{10}}\)
= 0,2 - \(\dfrac{2}{3}\)
= \(\dfrac{2}{10}\) - \(\dfrac{2}{3}\)
= - \(\dfrac{7}{15}\)
b, \(\dfrac{5^6+2^2.25^3+2^3.125^2}{26.5^6}\)
= \(\dfrac{5^6+4.5^6+8.5^6}{26.5^6}\)
= \(\dfrac{5^6.\left(1+4+8\right)}{26.5^6}\)
= \(\dfrac{1}{2}\)
a, (-0,2)2 ×× 5 - 213×27346×9546×95213×273
= 0,04 ×× 5 - 213×39212×310212×310213×39
= 0,2 - 2332
= 210102 - 2332
= - 715157
b, 56+22.253+23.125226.5626.5656+22.253+23.1252
= 56+4.56+8.5626.5626.5656+4.56+8.56
= 56.(1+4+8)26.5626.5656.(1+4+8)
= 1221