a + \(\frac{1}{a}\)+ b + \(\frac{1}{b}\)+ c + \(\frac{1}{c}\)< 6. Hãy chứng minh điều này vô lí với a,b,c khác nhau đôi một.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow2\left(m-1\right)x=2\)
\(\Leftrightarrow x=\frac{2}{m-1}\)
Vì \(2>0\)
\(\Rightarrow m-1>0\)
\(\Rightarrow m>1\)
Trước hết ta chứng minh bài toán phụ sau:
Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)
Thật vậy \(x+y+z=0\Leftrightarrow z=-x-y\)
Ta có: \(x^3+y^3+z^3=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(-x-y\right)^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2-x^2-2xy-y^2\right)\)
\(=\left(x+y\right).\left(-xy\right)=\left(-x-y\right).xy\)
Thay \(z=-x-y\) ta được: \(x^3+y^3+z^3=xyz\)
Áp dụng vào bài toán:
Phải chứng minh \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Vậy nên ta sẽ chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ca=0\)
\(\Leftrightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)(Chia cả 2 vế cho abc) \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Từ đó ta có điều phải chứng minh.
\(x^2-12x+9=0\)
\(\Leftrightarrow\)\(x^2-12x+36-27=0\)
\(\Leftrightarrow\)\(\left(x-6\right)^2-27=0\)
\(\Leftrightarrow\)\(\left(x-6-\sqrt{27}\right)\left(x-6+\sqrt{27}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-6-\sqrt{27}=0\\x-6+\sqrt{27}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=6+\sqrt{27}\\x=6-\sqrt{27}\end{cases}}\)
\(72\left(x-6\right)+72\left(x+6\right)=9\left(x^2-36\right)\)
\(144x=9x^2-324\)=0
\(9x^2-144x-324=0\)
\(9\left(x^2-16x-36\right)=0\)
\(9\left(x^2-18x+2x-36\right)=0\)
\(9\left(x-18\right)\left(x+2\right)=0\)
Đến đây bạn tự làm nhé
A^2/b^2-2+b^2/a^2
=a^2/b^2-2a/b×b/a+b^2/a^2
=(a/b-b/a)^2 lớn hơn hoặc bằng 0
Suy ra a^2/b^2-2+b^2/a^2 lớn hơn hoặc bằng 0
Nên a^2/b^2+b^2/a^2 lớn hơn hoặc bằng 2
\(\left(x+1\right).\left(x+1\right)\left(x+2\right)=24\)
\(\left(x^2+2x+1\right).\left(x+2\right)=24\)
\(x^3+2x^2+2x^2+4x+x+2=24\)
\(x^3+4x^2+5x+2=24\)
rồi đặt nhân tử chung
bạn tự giải nhé