Cho a2 + b2 = c2 + d2 = 2017 và ac + bd = 0
Tính giá trị biểu thức S = ab + cd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ dữ kiện đề bài => x + y + z = xyz
Ta có :
\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)
Tương tự với hai hạng tử còn lại , suy ra
\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy Max = 3/2 <=> x = y = z
Nguồn : Đinh Đức Hùng
Gọi 4 số đó là a , (a+1) , (a + 2) , (a + 3)
Do là 4 số tự nhiên liên tiếp nên buộc chúng phải là số chẵn
Đặt \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=t^2\)
Ta có
\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=4a^2+12a+14=4\left(a^2+3a+3\right)+2\)
Nhận thấy \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2\equiv2\left(mod4\right)\)
Mặt khác , \(t^2\equiv0\left(mod4\right)\)
=> Vô lý
Vậy tổng bình phương 4 số tự nhiên liên tiếp không là số chính phương
Ta có: \(\left(n^2+3n+1\right)^2-1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
*Do n là số tự nhiên nên tích trên là tích 4 số tự nhiên liên tiếp
Trong 4 số tự nhiên liên tiếp có 2 số chẵn liên tiếp, trong đó 1 số chia hết cho 4, số còn lại chia hết cho 2
=> Tích đó chia hết cho 8(1)
Trong 4 số tự nhiên liên tiếp chia hết cho 3
=> Tích đó chia hết cho 3(2)
Từ (1) và (2)
=> Tích 4 số tự nhiên liên tiếp chia hết cho 24
=> ĐPCM*
\(\left(n^2+3n+1\right)^2-1\)
\(=n^4+9n^2+1+6n^3+6n+2n^2-1\)
\(=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 2, 3, 4
mà \(\left(2,3,4\right)=1\)
nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 24
hay \(\left(n^2+3n+1\right)^2-1\) chia hết cho 24
Ta có:
\(2017\left(ab+cd\right)=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)
\(=\left(ad+bc\right)\left(bd+ac\right)=0\)
\(\Rightarrow ab+cd=0\)