Cho tam giác dều ABC .Từ một điểm M trên cạnh AB vẽ hai đường thẳng song song với hai cạnh AC,BC tại D và E .Tìm vị trí của M trên cạnh AB để độ dài doạn DE đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+6x+13\)
\(=x^2+6x+9+4\)
\(=\left(x+3\right)^2+4\)
Ta có: ( x + 3 )2 > 0 => ( x + 3)2 + 4 > 4
=>\(\left(x+3\right)^2+4\)có giá trị nhỏ nhất bằng 4
<=> \(\left(x+3\right)^2+4=4\)
<=>\(\left(x+3\right)^2=0\)
<=>\(x+3=0\) => \(x=3\)
Vậy \(x^2+6x+13\) có giá trị nhỏ nhất bằng \(4\)<=>\(x=3\)
Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)+3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ac+bc+ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) (đúng với a,b,c>0)
\(a^3+b^3+c^3\ge3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) (*)
Do a,b,c > 0 => \(a+b+c>0\) (1)
Áp dụng BĐT Cauchy ta có:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
suy ra: \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\) \(a^2+b^2+c^2-ab-bc-ca\ge0\) (2)
Dấu "=" xảy ra <=> \(a=b=c\)
Từ (1) và (2) => BĐT (*) đc chứng minh
\(-x^2+4x-9 \)
\(\Leftrightarrow-\left(x^2-4x+9\right)\)
\(\Leftrightarrow-\left(x^2-4x+4\right)-5\).
\(\Leftrightarrow-\left(x-2\right)^2-5\)
\(Do\) \(\left(x-2\right)^2\ge0\) \(\Rightarrow-\left(x-2\right)^2\le0\) \(\Rightarrow-\left(x-2\right)^2-5\le-5\) \(\forall x\)
\(Do\) \(đó\) \(-x^2+4x-9\le-5\) \(\forall x\) \(\left(đpcm\right)\)
\(a\ge5;b\ge6;c\ge7\)
\(\Rightarrow a^2\ge25;b^2\ge36;c^2\ge49\)
\(\Leftrightarrow a^2+b^2+c^2\ge25+36+49=110\)
Vì \(a\ge5;b\ge6;c\ge7\Rightarrow a< b< c\)
Vì a=5;b=6;c=7 ko thỏa mãn nên ta xét
\(a=6;b=7;c=8\Rightarrow a^2+b^2+c^2=6^2+7^2+8^2=36+49+64=139\)
=> a=5;b=6;c=7(loiaj)
rồi bn xét a=5;b=5;c=6
thông cảm cho em nhé vì em ms lớp 6 thôi
Ta có:\(x+1+x^2+x^3=1993^x\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=1993^x\)
Ta thấy x=0 là một nghiệm vì 0+1+0+0=19930
x <0 thì \(1993^x\)không nguyên còn \(x+1+x^2+x^3\) nguyên nên x<0 không là nghiệm
Còn trường hợp x>0 thì tớ chưa nghĩ ra nên cậu thử nghĩ cách chứng minh nhénhưng cảm thấy nó sẽ không có nghiệm được vì 1993^x sẽ rất lớn khi x lớn, nó tăng nhanh hơn x+1+x^2+x^3 rất nhiều lần Vậy nhé,khi nào chứng minh được thì tớ gửi cho nhé