2 người ngày đầu làm được tất cả 100 sản phẩm. Ngày hôm sau người thứ nhất làm vượt mức 20%. Người thứ hai làm vượt mức 25% so với ngày đầu nên cả hai người làm được tất cả 123 sản phẩm. Tính số sản phẩm mỗi người làm được trong ngày đầu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là thời gian để người thứ hai làm một mk xong công việc, điều kiện: x>0, x tính bằng ngày
Trong 1 ngày, người thứ hai làm đc\(\frac{1}{x}\)(công việc) nên 6 ngày người ấy làm đc \(\frac{6}{x}\)( công việc)
Hai người làm chung trong 4 ngày thì xong công việc nên trong 2 ngày, hai người làm đc \(\frac{1}{2}\)( công việc). Vậy còn \(\frac{1}{2}\) công việc mà người thứ 2 làm trong 6 ngày, do đó ta có phương trình:
\(\frac{6}{x}\)=\(\frac{1}{2}\Leftrightarrow=12\)(thỏa mẫn điều kiện)
Ta lại cso trong 1 ngày cả hai người làm đc \(\frac{1}{4}\)công việc , nên 1 ngày người thứ nhất làm đc
\(\frac{1}{4}-\frac{1}{12}=\frac{1}{6}\)công việc
Do đó người thứ 2 làm riêng mất 6 ngày
Vậy, người thứ nhất làm một mình thì trong 6 ngày sẽ xong công việc, và ngày thứ hai xong công việc trong 12 ngày khi làm riêng.
Ta có
ID/AD=S∆IBC/S∆ABC
IE/BE=S∆IAC/S∆ABC
IF/CF=S∆IAB/S∆ABC
→ ID/AD+IE/BE+IF/CF=(S∆IBC+S∆IAC+S∆IAB)/S∆ABC=1
Phải là (2+1)(2²+1)(2⁴+1)...(2³²+1)- 2^64
(2+1)(2²+1)(2⁴+1)...(2³²+1)
=(2-1)(2+1)(2²+1)(2⁴+1)...(2³²+1)
=(2²-1)(2²+1)(2⁴+1)...(2³²+1)
=(2⁴-1)(2⁴+1)...(2³²+1)=…=2^64-1
Vậy C=-1
=> \(x^4+x^4-\left(x^5+x^2\right)-2x=1\)
=> \(x^5-x^5-x^2-2x=1\)
=> \(0-x.\left(x+2\right)=1\)
=> \(x.\left(x+2\right)=-1\)
Ta có bảng:
\(x\) | \(1\) | \(-1\) |
\(x+2\) | \(-1\) | \(1\) |
=>
\(x\) | \(1\) | \(-1\) |
\(x\) | \(-3\) | \(-1\) |
Vậy x = 1;-1;-3
\(x^4+3x^3-x^2-x^3-3x^2+x-x^2-3x+1.\)
\(\left(x^4-x^3-x^2\right)+3\left(x^3-x^2-x\right)-\left(x^2-x-1\right)=0\)
\(x^2\left(x^2-x-1\right)+3x\left(x^2-x-1\right)-\left(x^2-x-1\right)=0\)
\(\left(x^2-x-1\right)\left(x^2+3x-1\right)=0\)
đến đây dùng denta
\(x^2-x-1=0\Leftrightarrow\Delta=b^2-4ac=1+4=5>0\)
vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{5}}{2}\) " 1)
\(x_2=\frac{1-\sqrt{5}}{2}\) (2)
\(x^2+3x-1=0\)
áp dụng denta ta có \(\Delta=b^2-4ac=9+4=13>0\)
vậy pt có 2 nghiệm phân biệt
\(x_3=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-3+\sqrt{13}}{2}\) (3)
\(x_4=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-3-\sqrt{13}}{2}\) (4)
gom hết lại rồi kl nghiệm của pt là ....................
Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca
a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²
Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn
â ) Ta có : AC \(\perp\) AB ( tam giác ABC vuông tại A )
: BK \(\perp\)AB ( gt )
Do đo : AC // BK ( vì cùng vuông góc với AB )
Xét tứ giác ABKC , ta có :
\(\widehat{A}=90^O\) ( tam giác ABC vuông tại A )
\(\widehat{B}=90^O\left(gt\right)\)
AC // BK ( cmt )
Do đo : tứ giác ABKC là hình thang vuông
b ) Ta co : AC // BK ( cmt )
=> \(\widehat{K_1}=\widehat{A_2}\) ( hai góc so le trong của hai đường thẳng song song )
Xét :\(\Delta BAKva\Delta HCA,taco:\)
\(\widehat{B}=\widehat{H}=90^o\)
\(\widehat{K_1}=\widehat{A_2}\left(cmt\right)\)
Do do : \(\Delta BAK\) đồng dạng \(\Delta HCA\)( g - g )
= > \(\frac{AB}{AK}=\frac{CH}{AC}\)
=> AC . AC = AK . CH
c) CÂU NÀY CÓ 2 CÁCH NHA
Cach 1 )
Ta có : \(\widehat{A_1}+\widehat{B_1}=90^o\) ( tổng số đo hai góc nhọn trong tam giác vuông )
mà : \(\widehat{A_1}+\widehat{A_2}=90^o\) ( tia AK nằm giữa hai tia AB và AC )
nên \(\widehat{B_1}=\widehat{A_2}\) ( cung phụ vào góc \(\widehat{A_1}\) )
Xét : \(\Delta ABHva\Delta CAH,taco:\)
\(\widehat{H_1}=\widehat{H_2}=90^o\)
\(\widehat{B_1}=\widehat{A_2}=\left(cmt\right)\)
Do do : \(\Delta ABH\) đồng dạng \(\Delta CAH\left(g-g\right)\)
\(=>\frac{HC}{AH}=\frac{AH}{HB}\)
\(=>AH.AH=HB.HC\)
\(AH^2=9.16\)
\(AH^2=144\)
\(AH=\sqrt{144}=12cm\)
Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H
\(AB^2=AH^2+BH^2\)
\(AB=\sqrt{12^2+9^2}\)
\(AB=\sqrt{144+81}\)
\(AB=\sqrt{225}\)
\(AB=15cm\)
Cách 2 : ( của lớp 9 nha )
Ta có : BC = BH + HC = 9 + 16 = 25cm ( vì H nằm giữa B và C )
Áp dụng hệ thức lượng vào \(\Delta ABC\) vuông tại A ( \(\widehat{A}=90^o;AH\perp BC\) )
\(AB^2=BH.BC\)
\(AB^2=9.25\)
\(AB^2=225\)
\(AB=\sqrt{225}=15cm\)
Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H
\(AH^2=AB^2-BH^2\)
\(AH^2=15^2-9^2\)
\(AH^2=225-81\)
\(AH^2=144\)
\(AH=\sqrt{144}=12cm\)
CÒN NHIỀU CÁCH NỮA NHA
OK CHÚC BẠN HỌC TỐT !!!!!
a) Ta có : \(KB\perp AB\)
\(AC\perp AB\)
\(\Rightarrow BK//AC\)
\(\Rightarrow\) tứ giác ABKC là hình thang
b) Ta có BK // AC
\(\Rightarrow\widehat{AKB}=\widehat{KAC}\)( so le trong )
Xét tam giác BAK và tam giác HCA có :
\(\widehat{AKB}=\widehat{KAC}\)
\(\widehat{ABK}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\)tam giác BAK đồng dạng với tam giác HCA ( g-g ) (đpcm)
\(\Rightarrow\frac{BA}{HC}=\frac{AK}{CA}\)
\(\Leftrightarrow AB\times AC=AK\times CH\left(đpcm\right)\)
c) Xét tam giác ABC và tam giác HBA có :
\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)
Chung \(\widehat{ABC}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA ( g-g )
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{AB}\)
\(\Leftrightarrow AB^2=BC\times HB\)
\(\Leftrightarrow AB^2=\left(9+16\right)\times9\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=15\left(cm\right)\)
Áp dụng định lý Pi-ta-go cho tam giác ABH vuông tại H ta có :
\(BH^2+AH^2=AB^2\)
\(\Leftrightarrow9^2+AH^2=15^2\)
\(\Leftrightarrow81+AH^2=225\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Vậy AB = 15 cm ; AH = 12 cm
mình giải theo cách lớp 6 nha
ca nô đi được số km là:
30 + 30 = 60 (km)
vận tốc trung bình của ca nô là:
60 : 4 = 15 ( km/h)
gọi vận tốc đi xuôi là V1, vận tốc đi ngược là V2 và vận tốc ca nô lúc nước lặng là V
vậy V1 = V + 4 km/h
V2 = V - 4 km/h
=> 15 = (V1 +V2 ) : 2
= ( V + 4 km/h + V - 4 km/h ) : 2
= 2V : 2 = V
vậy vận tốc ca noluc nước lặng là 15 km/h
Gọi số sản phẩm người thứ nhất và thứ hai làm được trong ngày đầu thứ tự là x, y sản phẩm. 0<x;y<100
Số sản phẩm người thứ nhất làm được trong ngày sau là x+x.20%=1,2.x
Số sản phẩm người thứ hai làm được trong ngày sau là y+y.25%=1,25.y
Ta có hệ \(\hept{\begin{cases}x+y=100\\1,2.x+1,25.y=123\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=40\\y=60\end{cases}}\)
Vậy....