K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

\(g\left(x\right)=x^2+x+2005=\left(x+\frac{1}{2}\right)^2+\frac{8019}{4}>0\forall x\in R\)

20 tháng 2 2019

Cách 2 (thường dùng đối với lớp 7 nè):

\(g\left(x\right)=x\left(x+1\right)+2005\)

+)Với \(x\ge0\) thì \(x+1>0\)

Khi đó: \(g\left(x\right)=x\left(x+1\right)+2005>0\)

+)Với \(-1< x< 0\) thì x + 1 > 0.Ta lại có:\(x^2\ge0\)

Nên \(g\left(x\right)=x^2+x+2005>0\)

+)Với \(x\le-1\Rightarrow x+1\le0\)

Suy ra \(x\left(x+1\right)\ge0\Rightarrow g\left(x\right)=x\left(x+1\right)+2005>0\)

Trong cả ba khoảng trên,ta đều có g(x) khác 0. (đpcm)

20 tháng 2 2019

\(R=x^4\left(x-2345\right)+2345x^2\left(x-1\right)+2345\left(x-1\right)\)\(=-x^4+x^2\left(x+1\right)\left(x-1\right)+\left(x-1\right)\left(x+1\right)\)\(=-x^4+x^4-x^2+x^2-1=-1\)
Coi lại giúp mình nha

20 tháng 2 2019

\(gt\Rightarrow x+1=2345\)

\(R=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+1\right)\)

\(R=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-1\)

\(R=-1\)

20 tháng 2 2019

a) Xét tam giác ABM và ACM, ta có:

       AB=AC (gt)

       AM:chung

Vậy tam giác ABM=ACM( cạnh huyền-cạnh góc vuông)

b)gọi giao điểm của AM,BC là D

Xét tam giác ADB và ADC, ta có

AB=AC(gt)

GÓC BAD=CAD(tam giác ABM=ACM)

AD: chung

Vậy tam giác ADB=ADC(c.g.c)

Góc ADB=ADC(2 góc tương ứng)

mà ADB+ADC=180( kề bù)

Vậy góc ADB=ADC=90

AM vuông góc với BC

20 tháng 2 2019

                       Giải

Gọi độ dài ba cạnh của tam giác là x , y , z (cm) ( x , y , z > 0 )

Ta có: S =12 .12x = 12 .15y = 12 .20z

⇔ 12x = 15y = 20z

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}\)  

ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{12}+\frac{1}{15}+\frac{1}{20}}=\frac{60}{\frac{1}{5}}=60.5=300\)

\(\Leftrightarrow\hept{\begin{cases}x=300.\frac{1}{12}=25\\y=300.\frac{1}{15}=20\\z=300.\frac{1}{10}=15\end{cases}}\)

Vậy mỗi cạnh là 25 , 20 , 15

Gọi độ dài ba cạnh của tam giác là a, b, c
Độ dài các cạnh của tam giác tỉ lệ nghịch với chiều cao : 
12a=15b=20c và a+b+c=60
a/1/12=b/1/15=c/1/20 va a+b+c=60
Ap dung tinh chat day ti so bang nhau : 
a/1/12=b/1/15=c/1/20=a+b+c/1/12+1/15+1/20=60/1/5=300
Suy ra :a/1/12=300=>a=300.1/12=25
b/1/15=300=>b=300.1/15=20
c/1/20=300=>c=300.1/20=15
Vậy độ dài ba cạnh của tam giác là 25cm, 20cm, 15cm

20 tháng 2 2019

Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d\(\ne\)0)

=> \(\frac{a}{b}=1\)=> a = b

    \(\frac{b}{c}=1\) => b = c      

  \(\frac{c}{d}=1\) => c = d                              

\(\frac{d}{a}=1\) => d = a

=> a = b = c = d

Khi đó, ta có: \(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)

hay \(\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\)

\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(\frac{1}{2}.4=2\)