K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

Nhóm các hạng tử để được bình phương ( Dùng hằng đẳng thức số 1 và 2 ) 
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\text{[}x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\text{]}+y^2-6y+13\)
\(=\left(x+1-2y\right)^2+\left(y^2-2y\cdot3+9\right)+4\)
\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)

Ta có :

\(\left(x+1-2y\right)^2\ge0\)với mọi \(x,y\in R\)
\(\left(y-3\right)^2\ge0\) với mọi \(y\in R\)
\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x,y\in R\)
\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4>0\) với mọi \(x,y\in R\)

3 tháng 6 2018

\(x^2+5y^2+2x-4xy-10y+14\)

\(=(x^2-4xy+4y^2)+2(x-2y)+1+(y^2-6y+9)+4\)

\(=(x-2y)^2+2(x-2y)+1+(y-3)^2+4\)

\(=(x-2y+1)^2+(y-3)^2+4>0\)

Vậy

3 tháng 6 2018

1. Để A có nghĩa thì \(x^3-3x-2\ne0\)

\(\Rightarrow\left(x^3-x\right)-\left(2x-2\right)\ne0\)

\(\Rightarrow x\left(x^2-1\right)-2\left(x-1\right)\ne0\)

\(\Rightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\ne0\)

\(\Rightarrow\left(x^2+x-2\right)\left(x-1\right)\ne0\)

\(\Rightarrow\left(x^2-1+x-1\right)\left(x-1\right)\ne0\)

\(\Rightarrow\left[\left(x+1\right)\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)\ne0\)

\(\Rightarrow\left(x-1\right)^2\left(x+2\right)\ne0\)

\(\Rightarrow x\ne1;x\ne-2\)

2. \(A=\frac{x^4-2x^2+1}{x^3-3x-2}=\frac{\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left[\left(x-1\right)\left(x+1\right)\right]^2}{\left(x-1\right)^2\left(x+2\right)}\)

                                                    \(=\frac{\left(x-1\right)^2.\left(x+1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left(x+1\right)^2}{x+2}\)

3/ Để A < 1 \(\Leftrightarrow\frac{\left(x+1\right)^2}{x+2}< 1\Leftrightarrow\left(x+1\right)^2< x+2\)

                                                        \(\Leftrightarrow x^2+2x+1< x+2\)

                                                         \(\Leftrightarrow x^2+x< 1\)

                                                           \(\Leftrightarrow x.\left(x+1\right)< 1\)

Vậy .....

3 tháng 6 2018

1. A có nghĩa khi \(x^3-3x-2\ne0\)

\(\Leftrightarrow x^3+x^2-x^2-x-2x-2\ne0\)

\(\Leftrightarrow x^2\left(x+1\right)-x\left(x+1\right)-2\left(x+1\right)\ne0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x-2\right)\ne0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x-2x-2\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow x-2\ne0\)(do \(\left(x+1\right)^2\ge0\)\(\Leftrightarrow x\ne2\)

2. Ta có :

Tử = \(x^4-2x^2+1=x^4-x^3+x^3-x^2-x^2+x-x+1\)

=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)

=\(\left(x-1\right)\left(x^3+x^2-x-1\right)=\left(x-1\right)\left[x^2\left(x+1\right)-x\left(x+1\right)\right]\)

=\(\left(x-1\right)\left(x+1\right)\left(x^2-1\right)=\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)^2\left(x-1\right)^2\)

Vậy \(A=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)

3. \(A< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Leftrightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)

\(\Leftrightarrow\frac{x^2-3x+3}{x-2}< 0\)ta có \(x^2-3x+3=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{3}{4}=\left(x-\frac{3}{4}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\)(1) \(\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)(Thỏa mãn)

Vậy x<2 thì A<1

3 tháng 6 2018

b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1

cho b=a+1

\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)

\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)

\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)

vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)

4 tháng 6 2018

Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k!  ^_^  *_*

Ta có : \(A=\left(a-1\right)a\left(a+1\right)\left(a+2\right)+1\)

\(=\left(a-1\right)\left(a+2\right)a\left(a+1\right)+1\)

\(=\left(a^2+a-2\right)\left(a^2+a\right)+1\)

\(=\left[\left(a^2+a\right)-2\right]\left(a^2+a\right)+1\)

\(=\left(a^2+a\right)^2-2\left(a^2+a\right)+1\)

\(A=\left(a^2+a-1\right)^2\)

Vậy A là số chính phương 

3 tháng 6 2018

A = ( a - 1 ) ( a + 1 ) a( a + 2 ) + 1

A = ( a^2 + a - a - 1 )( a^2 + 2a ) + 1

A = ( a^2 - 1 )( a^2 + 2a ) + 1

A = a^4 + 2a^3 - a^2 - 2a + 1

Ta có : \(x^8+14x^4+1\)

\(=x^8+2.x^4.7+1\)

\(=x^8+2.x^4.7+49-48\)

\(=\left(x^4+7\right)^2-48\)

\(=\left(x^4+7-\sqrt{48}\right)\left(x^4+7+\sqrt{48}\right)\)

3 tháng 6 2018

a/\(=\left(x^4+1\right)^2+12x^4=\left(x^4+1\right)^2+4x^2\left(x^4+1\right)+4x^4-4x^2\left(x^4+1\right)+8x^4\)

\(=\left(x^4+1+2x^2\right)^2-4x^2\left(x^4+1-2x^2\right)=\left(x^4+2x^2+1\right)-\left(2x^3-2x\right)^2\)

\(=\left(x^4+2x^3+2x^2-2x+1\right)\left(x^4-2x^3+2x^2+2x+1\right)\)

b/\(=\left(x^4+1\right)^2+96x^4=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)

\(=\left(x^4+1+8x^2\right)^2-16x^2\left(x^4+1-2x^2\right)=\left(x^4+8x^2+1\right)-\left(4x^3-4x\right)^2\)

\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)

\(x^8+x^4+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)

\(x^5-x^4-1\)

\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)

\(=\left(x^5-x^4+x^3\right)-\left(x^3-x^2+x\right)-\left(x^2-x+1\right)\)

\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

3 tháng 6 2018

L8 đã học hằng đẳng thức chưa e nhỉ?

19 tháng 6 2018

hình như rồi

3 tháng 6 2018

\(M=\frac{2x-1}{x^2-5x+6}=\frac{2x-1}{\left(x-2\right)\left(x-3\right)}=\frac{5\left(x-2\right)-3\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{x-3}-\frac{3}{x-2}=\frac{5}{x-3}+\frac{3}{2-x}\)