cho tam giác MNP vuông tại M, MP = 9 cm NP = 24 cm đường trung trực của NP cắt đường thẳng MP tại E cắt NP tại A Tính độ dài đoạn thẳng EP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 - 4x2 = 3
\(\rightarrow\)hệ phương trình tối giản
\(\Rightarrow\)x vô nghiệm
HAI PHƯƠNG TRÌNH TRÊN LÀ 2 PT TƯƠNG ĐƯƠNG
VÌ NÓ CÓ CÙNG TẬP NGHIỆM LÀ S={1;-3}
\(Q=\left(x+\dfrac{2}{x}\right)^2+\left(y+\dfrac{2}{y}\right)^2\ge\dfrac{1}{2}\left(x+\dfrac{2}{x}+y+\dfrac{2}{y}\right)^2\)
\(Q\ge\dfrac{1}{2}\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2\sqrt{\dfrac{x}{x}}+2\sqrt{\dfrac{y}{y}}+\dfrac{4}{x+y}\right)^2\)
\(Q\ge\dfrac{1}{2}\left(4+\dfrac{4}{x+y}\right)^2\ge\dfrac{1}{2}\left(4+\dfrac{4}{2}\right)^2=18\)
\(Q_{min}=18\) khi \(x=y=1\)
a, Xét tam giác ABC và tam giác OMN có
^BAC = ^MON = 900
ACON=BCMN=84=105=2ACON=BCMN=84=105=2
Vậy tam giác ABC ~ tam giác OMN
b, ABOM=BCMN=ACONABOM=BCMN=ACON( tỉ số đồng dạng )
a)
Tính AB:
AB2 = BC2 + AC2
AB2 = 164
AB = \(\sqrt{164}\)= 12,8
Tính OM
OM2 = MN2 + ON2
OM2 = 41
OM = \(\sqrt{41}\)= 6,4
b)
Xét \(\Delta ABC\)và \(\Delta OMN\):
\(\widehat{A}\)= \(\widehat{O}\)= 90o
\(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
\(\Rightarrow\) \(\Delta ABC\)~ \(\Delta OMN\) \(\Leftrightarrow\) \(\frac{AB}{OM}\)= \(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
\(\left(x+\frac{2}{x}\right)^2+\left(y+\frac{2}{y}\right)^2=x^2+y^2+\frac{4}{x^2}+\frac{4}{y^2}+4+4\)
\(=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(\frac{3}{x^2}+3x+3x\right)+\left(\frac{3}{y^2}+3y+3y\right)-6\left(x+y\right)+8\)
\(\ge2+2+9+9-6.2+8=18\)