HELP ME I NEED THE ANSWER SOON
Tìm nghiệm nguyên của đa thức: f(x)=x^3-x-7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(y\le9\) ta có bảng:
y | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
x | \(\frac{106}{7}\) | \(\frac{93}{7}\) | \(\frac{80}{7}\) | \(\frac{67}{7}\) | \(\frac{54}{7}\) | \(\frac{41}{7}\) | 4 | \(\frac{11}{7}\) | \(\frac{2}{7}\) |
vậy x=4 và y=7 thỏa mãn
ta có:
\(|x+1|\ge0\Rightarrow|x+1|+5\ge5\)
=>\(Max\left(A\right)=5\Leftrightarrow x=-1\)
tu ke hinh :
a, xet tam giac ABD va tam giac HBD co : BD chung
goc ABD = goc HBD do BD la phan giac cua goc ABC (gt)
goc BAC = goc DHB = 90 do dau tu ma tim
=> tam giac ABD = tam giac HBD (ch - gn)
b,
+ AB _|_ AC do tam giac ABC vuong (gt) (1)
EI _|_ AC (gt) (2)
=> EI // AB (dl)
BI _|_ AB (gt) (3)
=> IB _|_ EI (dl) (4)
(1)(2)(3)(4) => EIBA la hinh chu nhat (dn)
co AB = EA (gt)
=> EIBA la hinh vuong (dn)
=> AB = AE = EI = IB (dn)
+ co tam giac ABD = tam giac HBD (Cau a) => BH = AB (dn)
=> AB = AE = EI = IB = BH (tcbc)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x+y-2014z}{z}=\frac{y+z-2014x}{x}=\frac{z+x-2014y}{y}=\frac{\left(-2012\right)\left(x+y+z\right)}{x+y+z}=-2012\)
Ta có: \(\frac{x+y-2014z}{z}=-2012\Rightarrow x+y-2014z=-2012z\Leftrightarrow x+y=2z\)
Tương tự: \(y+z=2x,z+x=2y\)
Khi đó: \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{2x.2y.2z}{xyz}=8\)
Vậy A=8.
Nguyễn Tất Đạt thiếu 1 trường hợp nha bạn
\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x=-y-z\\y=-x-z\\z=-x-y\end{cases}}\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=\left(-\frac{z}{y}\right).\left(\frac{-x}{z}\right).\left(\frac{-y}{x}\right)=-1\)
a) Xét tam giác ABC, có :
\(AB^2=4^2=16\)
\(AC^2=3^2=9\)
\(BC^2=5^2=25\)
=>\(AB^2+AC^2=BC^2\)=> tam giác ABC vuông tại A (pi ta go đảo)
Có : BH + HC = BC <=> 3.2 + HC = 5 <=> HC = 1.8
Xét tam giác ABH, có góc H = 90 độ :
=>\(BH^2+AH^2=AB^2\)
<=>\(3.2^2+AH^2=4^2\)
<=>\(10.24+AH^2=16\)
<=>\(AH^2=5.76\)
<=>\(AH=\sqrt{5.76}\)
<=>\(AH=2.4\left(cm\right)\)
Chu vi tam giác AHC là : AH + HC + AC = 2.4 + 1.8 + 3 = 7.2
AB = 4 (gt) => AB^2 = 4^2 = 16
AC = 3 (gt) => AC^2 = 3^2 = 9
=> AB^2 + AC^2 = 16 + 9 = 25
BC = 5 (gt) => BC^2 = 5^2 = 25
=> AB^2 + AC^2 = BC^2
=> tam giac ABC vuong tai A (dl Pytago dao)
b, AH _|_ BC (gt) => tam giac AHB vuong tai H (dn)
=> AH^2 + HB^2 = AB^2 (dl Pytago)
HB = 3,2 ; AB = 4 (gt)
=> AH^2 = 4^2 - 3,2^2
=> AH^2 = 16 - 10,24
=> AH^2 = 5,76
=> AH = 2,4 do AH > 0
den tu tu ma tinh chu vi
đa thức ko có nghiệm nguyên
BẠN CÓ THỂ NÓI CỤ THỂ KHÔNG??????