Cho a^2.b/c + b^2.c/a + c^2.a/b=3 Tìm GTNN của P=a^6/b^6 + b^6/c^6. + c^6/a^6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)
\(P=\frac{x}{x+1}\)
b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)
Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)
Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó:
\(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)
c) P > 1 khi \(\frac{x}{x+1}>1\)
\(\Leftrightarrow1-\frac{1}{x+1}>1\)
\(\Leftrightarrow\frac{1}{x+1}< 0\)
\(\Leftrightarrow x< -1\)
e) Đề không rõ ràng
\(4x^2-9xy-9y^2=0\)
\(\Leftrightarrow\left(x-3y\right)\left(4x+3y\right)=0\)
làm nốt
Ta chỉ cần xét 3 ly trà sữa bán được thôi. Giả sử bán được 3 ly trà sữa.
Phương án 1: Giá bán 1 ly là: \(24000.0,7=16800\)
Giá bán 3 ly là: \(16800.3=50400\)
Phương án 2:
Giá bán 3 ly trà sữa là: \(24000.2=48000\)
Từ đây ta thấy Phương án 1 thu được nhiều tiền hơn Phương án 2.
PS: Bài toán đã được sử lý ở tình huống hoàn hảo nhất chứ thực tế thì chưa thể nói được là phương án nào tốt hơn.
Ta có :
\(C=4-x^2+2x\)
\(-C=x^2-2x-4\)
\(-C=\left(x^2-2x+1\right)-5\)
\(-C=\left(x-1\right)^2-5\ge5\)
\(\Rightarrow\)\(C=-\left(x-1\right)^2+5\le5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(x-1=0\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTLN của \(C\) là \(5\) khi \(x=1\)
Chúc bạn học tốt ~