timg nghiệm nguyên của pt \(x^2+y^2+xy=x^2y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
máy tính mik khó viết nhưng bài này có mẫu chung nên dễ làm mà
bn cứ đưa mẫu ra có x-8 chung đó
sau đó tính tiếp theo bt là ra mà
bạn ơi bạn làm chi tiết ra ik mk thư rôi nhưng không đc
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3}{a+2b}=\frac{1}{3}.\frac{9}{a+b+b}\le\frac{1}{3}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)
Tương tự:\(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)\)
Cộng theo vế ta được:
\(\frac{3}{a+2b}+\frac{3}{b+2c}+\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a tự quy đồng cùng mẫu rồi làm thôi :"))
b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)
\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)
Đặt \(x^2-x=k\), ta có:
\(k.\left(k-2\right)=24\)
\(\Leftrightarrow k^2-2k+1=25\)
\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)
\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)
c)\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)
\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)
p/s: bn tự kết luận nha :))
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(B=\frac{x^5+x^2}{x^3-x^2+x}\left(ĐKXĐ:x\ne0\right)\)
\(\Rightarrow B=\frac{x^2\left(x^3+1\right)}{x\left(x^2-x+1\right)}=\frac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}=x^2+x\)
b,Để \(B=0\Rightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
c,\(B=x^2+x=x^2+2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2+\left(-\frac{1}{4}\right)\ge-\frac{1}{4}\)
Vậy MIn = -1/4 <=> x = -1/2
dễ
x2 + y2 + xy = x2y2
x2 + xy + y2 - x2y2 = 0
4x2 + 4xy + 4y2 - 4x2y2 = 0
( 4x2 + 8xy + 4y2 ) - ( 4x2y2 + 8xy + 1 ) = -1 ( thêm - 1 )
( 2x + 2y )2 - ( 2xy + 1 )2 = -1
( 2x + 2y - 2xy - 1 ) ( 2x + 2y + 2xy + 1 ) = -1
\(\Rightarrow\)\(\hept{\begin{cases}2x+2y-2xy-1=1\\2x+2y+2xy+1=-1\end{cases}}\)hoặc \(\hept{\begin{cases}2x+2y-2xy-1=-1\\2x+2y+2xy+1=1\end{cases}}\)
suy ra tìm đc ( x; y ) \(\in\){ ( 0 ; 0 ) ; ( -1 ; 1 ) ; ( 1 ; -1 ) }
SKT-STT giúp mk bài tập này vs
Tìm các số nguyên x dể bt \(A=\frac{x^5+1}{x^3+1}\) có giá trị là số nguyên