K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

\(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\)

Vì \(\left(2x-y+7\right)^{2012}\ge0\forall x;y\)và \(\left|x-3\right|\ge0\Leftrightarrow\left|x-3\right|^{2013}\ge0\forall x\)

\(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)

Dấy "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+7=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=3\end{cases}}}\)

Vậy....

3 tháng 3 2019

\(222^{333}+333^{222}\)

\(=\left(222^3\right)^{111}+\left(333^2\right)^{111}⋮\left(222^3+333^2\right)=11051937⋮13\)

=> đpcm

Hằng đẳng thức: an - 1 = (a-1).[a(n-1) + a(n-2) +...+ 1] = (a-1).p (với n nguyên dương)
an + 1 = (a+1).[a(n-1) - a(n-2) +..+ 1] = (a+1).q (với n nguyên dương lẻ)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
222333 - 1 = (222 - 1).p = 13.17.p
333222 + 1 = (333²)111 + 1 = 110889111 + 1 = (110889 + 1).q = 13.8530.q
222333 + 333222 = 222333 - 1 + 333222 + 1 = 13(17.p + 8530.q) chia hết cho 13

K NHÉ

3 tháng 3 2019

_Nà ní??:)

_#Kiiu

3 tháng 3 2019

Ok bạn.

Gọi B , N , T theo thứ tự là số chén trà mà Bình , Nhân , Tâm đã uống , với B , N , T là những số tự nhiên khác 0.

Ta có :       \(\orbr{\begin{cases}B+5=N+T\\N+9=T+B\end{cases}}\)

\(\Rightarrow B+N+14=N+2T+B\)

\(\Rightarrow2T=14\Leftrightarrow T=7\)

Lúc đó ta có : \(\hept{\begin{cases}B+5=N+7\\B+7=N+9\end{cases}\Rightarrow B=N+2}\)

Trong 3 người , có một người đã uống 11 chén trà . 

Vì vậy ta có : \(B=11\)hoặc \(N=11\)

- Nếu \(N=11\)thì \(B=13\), vì vậy không thỏa mãn yêu cầu ( trong 3 số 13 , 11 , 7 không có số nào là bội của 3)

Do đó ta có : \(B=11\Rightarrow N=9⋮3\)

Vậy: 

  •          Bình uống 11 chén trà , họ Hàn
  •          Nhân uống 9 chén trà , họ Hà
  •          Tâm uống 7 chén trà , họ Lâm

Bài này sáng thầy hướng dẫn tớ .

Chú ý ; bài mình làm sai thì mong các bạn sủa lại hộ mình , đưng như mấy bạn CTV đi coi thường người khác.

3 tháng 3 2019

Thôi được rồi .

Giải:

\(P=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{\left(4n-3\right)\left(4n+1\right)}\)

\(\Rightarrow4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{\left(4n-3\right)\left(4n+1\right)}\)

            \(=\frac{5-1}{1.5}+\frac{9-5}{5.9}+...+\frac{\left(4n+1\right)-\left(4n-3\right)}{\left(4n-3\right)\left(4n+1\right)}\)

            \(=\left(\frac{1}{1}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+...+\frac{1}{4n-3}-\frac{1}{4n+1}\)

            \(=1-\frac{1}{4n+1}=\frac{4n}{4n+1}\)

Vậy \(A=\frac{4n}{4n+1}\)

3 tháng 3 2019

cảm ơn nha

3 tháng 3 2019

Thôi động viên các bạn làm phần nào cũng  6 tích nhé. Làm bao nhiêu phần thì số tích nhân lên .

3 tháng 3 2019

Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c 
=> p - a = (a + b + c)/2 - a 
=> p - a = (b + c + a - 2a)/2 
=> p - a = (b + c - a)/2 
=> 2(p - a) = b + c - a (1) 
Tương tự ta chứng minh được: 
2(p - b) = a + c - b (2) 
2(p - c) = a + b - c (3) 
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b) 
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ] 
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] 
Bây giờ ta đã đưa bài toán về chứng minh 
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Ta có: (x - y)² ≥ 0 
<=> x² - 2xy + y² ≥ 0 
<=> x² - 2xy + y² + 4xy ≥ 4xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
=> với x + y ≠ 0 và xy ≠ 0 
=> (x + y)²/(x+ y) ≥ 4xy/(x + y) 
=> (x + y) ≥ 4xy/(x + y) 
=> (x + y)/xy ≥ (4xy)/[xy(x + y)] 
=> 1/x + 1/y ≥ 4/(x + y) (*) 
Áp dụng (*) với x = p - a và y = p - b ta được: 
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4) 
Chứng minh tương tự ta được: 
1/(p - a) + 1/(p - c) ≥ 4/b (5) 
1/(p - b) + 1/(p - c) ≥ 4/a (6) 
Cộng vế với vế của (4);(5) và (6) ta được: 
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c) 
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) ) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Dấu bằng xảy ra <=> a = b = c. 

Sai thì thôi nha !!! k mk nha

3 tháng 3 2019

\(a\ge b;a\ge c\Rightarrow a+a+a\ge a+b+c\Rightarrow3a\ge a+b+c\Rightarrow\frac{a+b+c}{3}\le a\) (1)

bđt tam giác: \(a< b+c\Rightarrow a+a< a+b+c\Rightarrow2a< a+b+c\Rightarrow a< \frac{a+b+c}{2}\)(2)

(1); (2) suy ra đpcm