Tìm giá trị lớn nhất của biểu thức : M = \(\frac{5}{2x^2+5x+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Pt có nghiệm x = 2 tức là
\(\left(m^2-1\right).2^2+2\left(m-1\right)-3m^2+m=0\)
\(\Leftrightarrow4m^2-4+2m-2-3m^2+m=0\)
\(\Leftrightarrow m^2+3m-6=0\)
\(\Delta=33>0\Rightarrow x=\frac{-3\pm\sqrt{33}}{2}\)
Thử lại (tự thử)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=4-5x-4x^2\)
\(=-\left(4x^2+5x-4\right)\)
\(=-\left(4x^2+4x+1-5\right)\)
\(=-\left[\left(2x+1\right)^2-4\right]\)
\(=-\left(2x+1\right)^2+4\)
Vì \(-\left(2x+1\right)^2\le0\)với mọi x
\(\Rightarrow-\left(2x+1\right)^2+4\le4\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy max M=4 khi \(x=-\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f\left(x\right)=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(=\left(x^2-ax-bx+ab\right)\left(x-c\right)\)
\(=x^3-\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
\(=x^3+\left(ab+bc+ca\right)x+abc\)
\(-f\left(-x\right)=-\left[\left(-x-a\right)\left(-x-b\right)\left(-x-c\right)\right]\)
\(=-\left[\left(x^2+ax+bx+ab\right)\left(-x-c\right)\right]\)
\(=-\left[-x^3-\left(a+b+c\right)x^2-\left(ab+bc+ca\right)x-abc\right]\)
\(=-\left[-x^3-\left(ab+bc+ca\right)x-abc\right]\left(a+b+c=0\right)\)
\(=x^3+\left(ab+bc+ca\right)x+abc\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề:
\((2x^2+x-2015)^2+4(x^2-5x-2016)^2=4(2x^2+x-2015)(x^2-5x-2016)\)
\(\Rightarrow\left(2x^2+x-2015\right)^2-2.\left(2x^2+x-2015\right).2.\left(x^2-5x-2016\right)+[2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow[2x^2+x-2015-2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow11x+2017=0\)
\(\Rightarrow x=\frac{-2017}{11}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,\(A=2x^2-6x+7\)
\(=2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" khi \(x=\frac{3}{2}\)
2,\(B=\frac{2x^2-6x+5}{x^2-2x+1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow Bx^2-2Bx+B=2x^2-6x+5\)
\(\Leftrightarrow x^2\left(B-2\right)+2x\left(3-B\right)+B-5=0\)(1)
*Với B = 2 thì \(\left(1\right)\Leftrightarrow x^2\left(2-2\right)+2x\left(3-2\right)+2-5=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\left(TmĐKXĐ\right)\)
*Với \(B\ne2\)thì pt (1) là pt bậc 2 ẩn x tham số B
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(3-B\right)^2-\left(B-2\right)\left(B-5\right)\ge0\)
\(\Leftrightarrow9-6B+B^2-B^2+7B-10\ge0\)
\(\Leftrightarrow B\ge1\)
Dấu "=" xảy ra khi \(\left(1\right)\Leftrightarrow-x^2+4x-4=0\)
\(\Leftrightarrow-\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)
Thấy 1 < 2 nên BMin = 1<=> x = 2
Vậy ....
A=(9x2-6x+1)+(7x2+7)-1=(3x2+1)2+7(x2+7)-1
Vì: (3x2+1)2\(\ge\)0 và 7(x2+7)\(\ge\)0
Nên:A\(\ge\) -1
B=\(\frac{A-2}{\left(x-1\right)^2}\)\(\ge\) -3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-12x-16=0\Leftrightarrow x^2\left(x+2\right)-2x\left(x+2\right)-8\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x-8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-4\right)+2\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)^2\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)
Đặt: \(A=2x^2+5x+4\)
\(2A=4x^2+10x+8\)
\(2A=4x^2+10x+\frac{25}{4}+\frac{7}{4}\)
\(2A=\left(2x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
\(A\ge\frac{7}{8}\rightarrow M\le\frac{5}{\frac{7}{8}}=\frac{40}{7}\)