K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

theo ta-let ta có:
AI trên DK = IB trên KC (=MI trên MK) 
AI trên KC = IB trên DK (=IN trên NK) 

nhân thẳng hàng dược

AI^ 2 trên DK. KC = IB^2 trên DK .KC
suy ra AI= IB
mà AI trên DK = IB trên KC nên DK= kC 
DPCM

18 tháng 2 2019

DK VÀ BE KO //

CHÚNG SO LE

VẼ HÌNH THỬ IK

18 tháng 2 2019

nham KB//DE

18 tháng 2 2019

\(\left(x^2-xy+y^2\right)^2\left(x^2+xy+y^2\right)^2\)

Phương trình thuần nhất đẳng cấp bậc 8 bạn nha :D

18 tháng 2 2019

\(\left(x-1\right)\left(x^2-2x+2\right)\)

18 tháng 2 2019

\(x^3-x^2+2=x^3+x^2-2x^2-2x+2x+2\)

\(=x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)\)

18 tháng 2 2019

Lời giải:

Để ý rằng 4n2+16n+7=(2n+1)(2n+7)4n2+16n+7=(2n+1)(2n+7)

Vì n∈N⇒2n+1,2n+7>1n∈N⇒2n+1,2n+7>1

Do đó, 4n2+16n+7∉P4n2+16n+7∉P với mọi số tự nhiên nn

Vậy không tìm được số nn thỏa mãn điều kiện đề bài

K MK NHÁ

#HC TỐT#

#TTV#

19 tháng 8 2020

Đặt a+1=p suy ra:4a2+8a+5=4p2+1

                             6a2+12a+7=6p2+1

Do p là số nguyên tố nên thử chọn p 

p=2 loại

p=3 loại

Ta được p=5

với p>5 thì p ko chia hết cho 5

suy ra p có dạng 5k+1, 5k+2,5k+3,5k+4(k trong N)

với 5k+1=p thì có : 4p2+1=100k2+40k+5 chia hết cho 5 loại

với 5k+2=p thì có : 6p2+1=150k2+120k+25 chia hết cho 5 loại

với p=5k+3 và 5k+4 tương tự

Suy ra p=5 

Vậy a+1=p,a=4

18 tháng 2 2019

Tách M ra sẽ =x/x+x/y+y/x+y/y

=> M=1+1+x/y+y/x

x/y+y/x >= 2 (định lí cauchy)

=> M>=4.

Mà đề bài phải là tìm GTNN nhá !!!

18 tháng 2 2019

Lạnh Lùng Boy sai rồi , nếu Cô-si thì x = y mà đề bài là  x < y -> dấu "=" không xảy ra , đề tìm max là đúng, đợi ít đang nghĩ

18 tháng 2 2019

đề thiếu ko bạn???

18 tháng 2 2019

\(x^4-2x^3+3x^2-4x+2015=\left(x^2-x\right)^2+2\left(x-1\right)^2+2013\)

Mà \(\left(x^2-x\right)^2\ge0\forall x\)\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow Min=2013\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

19 tháng 2 2019

Cách này cũng khá giống của bạn Nguyễn Văn Hạ nhưng mình nghĩ dễ bến đối hơn chỗ \(x^4-2x^3+x^2\rightarrow x^2\left(x-1\right)^2\)

\(A=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2015\right)\)

\(=x^2\left(x-1\right)^2+2\left(x-1\right)^2+2013\ge2013\)

Dấu "=" xảy ra khi x - 1 = 0 tức là x = 1

Vậy \(A_{min}=2013\Leftrightarrow x=1\)

18 tháng 2 2019

gọi số hàng ghế là x

theo đề ta có\(\left(\frac{300}{x}+2\right)\left(x-3\right)=289\Leftrightarrow-\frac{900}{x}+2x+5=0\\ \Leftrightarrow2x^2+5x-900=0\)

                  \(\Leftrightarrow\left(x-20\right)\left(2x+45\right)=0\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-\frac{45}{20}\left(lộai\right)\end{cases}}\)

               vậy có 20 hàng ghế