K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

A B C E D 1 2 K H I O

a,,Ta có A^=70*

Mà tam giác ABC cân tại A 

=>B^=C^=180*-70*/2=110*/2=55*

b,Ta có :CBD^=55*+ABD^=180*(Góc bẹt)

BCE^=55*+ACE^=180*(Góc bẹt)

=>ABD^=ACE^

Xét tam giác ABD và tam giác ACE

AB=AC(gt)

ABD^=ACE^(cmt)

A1^=A2^(gt)

=>tam giác ABD = tam giác ACE (g-c-g)

c,theo câu b ta có :

KEC^HDC^

DB=EC

Xét tam giác vuông HBD và tam giác vuông KCE

DB=EC(cmt)

KEC^=HDC^(cmt)

=> tam giác HBD = tam giác KCE

=>BH=CK

Ta có \(\frac{2x}{3y}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{2x}{-1}=\frac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\y=\frac{7}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}\)

Vậy \(x=-\frac{7}{4};y=\frac{7}{2}\)

K chắc

Học tốt

## Mirai

Theo bài ra ta cs 

\(\frac{2x}{3y}=-\frac{1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)và \(2x+3y=7\)

ADTC dãy tỉ số bằng nhau ta cs 

\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}\Rightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\3y=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}}\)

Bài làm

a) Xét tam giác ABC cân tại A

=> ^B = ^C 

Mà ^A + ^B + ^C = 180°

=> ^B + ^C = 180° - ^A

=> ^B = ^C = ( 180° - 50° )/2

=> ^B = ^C = 130°/2 = 65°

b) Ta có: ^B = ^ACB ( Tam giác ABC cân )

Mà ^ACB = ^ECN ( hai góc đối )

=> ^B = ^ECN

Xét tam giác MBD và tam giác NCE có:

^MDB = ^NEC ( = 90° )

BD = CE ( gt )

^B = ^ECN ( cmt )

=> ∆MBD = ∆NCE ( g.c.g )

=> MD = NE

Ta có: MD vuông góc với BE

            NE vuông góc với BE

=> MD // NE 

c) Vì MD // NE

=> ^DMI = ^ENI ( so le trong )

Xét tam giác DMI và tam giác ENI có:

^DMI = ^ENI ( cmt )

MD = EN ( cmt )

^MDI = ^NEI ( = 90° )

=> ∆DMI = ∆ENI ( g.c.g )

=> DI = IE ( hai cạnh tương ứng )

=> I là trung điểm của DE ( đpcm ) 

27 tháng 3 2020
Các bạn ơi cho mình hỏi làm sao để đổi hình nền vậy
5 tháng 3 2020

Bạn ơi t nghĩ là k vào đc đâu bn ạ

Nếu bn ghi rõ đề ra thì chắc ..........

7 tháng 3 2020

A B C N M I D E J

a)  +) Xét \(\Delta\)ABC cân tại A

=> AB = AC và  \(\widehat{ABC}=\widehat{ACB}\)  ( tính chất tam giác cân )

+) Mà \(\widehat{ACB}=\widehat{NCE}\)  ( 2 góc đối đỉnh )

 => \(\widehat{ABC}=\widehat{NCE}\)

+) Xét \(\Delta\) BDM vuông tại M  và \(\Delta\)CEN vuông tại N có

BD = CE  (gt)

\(\widehat{ABC}=\widehat{NCE}\)  ( cmt) 

=> \(\Delta\)BDM = \(\Delta\)CEN   ( ch-gn) 

b) +) Xét \(\Delta\) ABC vuông tại A

=> \(BC^2=AB^2+AC^2\)  ( định lí Py-ta-go)

=> \(BC^2=2.AB^2\)

=> \(BC^2=2.4^2=2.16=32\)

\(\Rightarrow BC=\sqrt{32}\)  ( cm)   ( do BC > 0 )

Vậy 

Từ ^2

5 tháng 3 2020

a, xét ∆IPN và ∆IQM có : ^PIN = ^QIM (đối đỉnh)

MI = IN do I là trđ của MN (Gt)

PI = QI do I là trđ của PQ (gt)

=> ∆IPN = ∆IQM (c-g-c)

b, ∆IPN = ∆IQM (câu a)

=> ^MQI = ^IPN mà 2 góc này so le trong

=> QM // PN

5 tháng 3 2020

N P I Q M 1 2

a,Xét \(\Delta PIN\)và \(\Delta QIM\)có :

\(PI=QI\left(gt\right)\)

\(IN=IM\left(gt\right)\)

\(I_1=I_2\left(ĐĐ\right)\)

\(=>\Delta PIN=\Delta QIM\left(c-g-c\right)\)

b,Theo câu a ta đã cm được : \(\Delta PIN=\Delta QIM=>PNI=QMI\left(goc-tuong-ung\right)\)

Do 2 góc này bằng nhau và ở vị trí sole trong

\(=>NP//QM\)

5 tháng 3 2020

P/s: Bài toán này khá hay đó !!

Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)

Mà : \(a,b,c>0\)

\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)

+) Xét : \(a^2c+a^2b=b^2c+ab^2\)

\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)

\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)

( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )

+) Xét \(b^2c+ab^2=c^2b+c^2a\)

\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)

\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)

\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)

( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )

Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)

6 tháng 3 2020

 Thx nha !