K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

Đặt \(\sqrt{x+1}=a\)                                            \(ĐKXĐ:x\ge0\)

        \(\sqrt{3x}=b\)                                               

Ta có: \(a-b=b^2-a^2\)

\(\Leftrightarrow a-b+a^2-b^2=0\)

\(\Leftrightarrow\left(a-b\right)+\left(a+b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)

Mà \(a+b+1>0\forall x\)

\(\Rightarrow a-b=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x+1}=\sqrt{3x}\)

\(\Leftrightarrow x+1=3x\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)

15 tháng 12 2017

\(ĐKXĐ:x\ge0\)

Ta có PT \(\Leftrightarrow\sqrt{x+1}-\sqrt{3x}-\left(2x-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-\frac{\sqrt{6}}{2}\right)-\left(\sqrt{3x}-\frac{\sqrt{6}}{2}\right)-\left(2x-1\right)=0\)

\(\Leftrightarrow\frac{x+1-\frac{6}{4}}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3x-\frac{6}{4}}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-\left(2x-1\right)=0\)

\(\Leftrightarrow\frac{x-\frac{1}{2}}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3\left(x-\frac{1}{2}\right)}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-2\left(x-\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(\frac{1}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-2\right)=0\)

\(\Rightarrow x=\frac{1}{2}\)(TMĐKXĐ)

15 tháng 12 2017

Điều kiện: \(x;y;z>0\)

Ta có: \(A=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\frac{x}{4}+\frac{3x}{4}+\frac{y}{2}+\frac{y}{2}+\frac{z}{4}+\frac{3z}{4}+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3x}{4}+\frac{3}{x}\right)+\left(\frac{y}{2}+\frac{9}{2y}\right)+\left(\frac{z}{4}+\frac{4}{z}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)

Áp dụng BĐT Cauchy cho 2 số dương, ta có: 

\(A\ge2\sqrt{\frac{3x}{4}.\frac{3}{x}}+2\sqrt{\frac{y}{2}.\frac{9}{2y}}+2\sqrt{\frac{z}{4}.\frac{4}{z}}+\frac{1}{4}\left(x+2y+3z\right)\)

\(\Rightarrow A\ge2.\frac{3}{2}+2.\frac{3}{2}+2.1+\frac{1}{4}.20\)

\(\Rightarrow A\ge13\)

Dấu = xảy ra khi \(x=2\)\(;\)\(y=3\)\(;\)\(z=4\)

Vậy \(A_{Min}=13\Leftrightarrow x=;y=3;z=4\)

15 tháng 12 2017

a) Hàm số (1) đồng biến khi: \(m-1>0\Rightarrow m>1\)

b) (d) đi qua điểm A(-1;2) suy ra x = -1 và y = 2

Thay x = -1 và y = 2 vào hàm số (1) ta có: \(2=\left(m-1\right)\times\left(-1\right)+2-m\Leftrightarrow2=1-m+2-m\)

\(2=-2m+3\Leftrightarrow m=\frac{1}{2}\)

22 tháng 12 2021

bẹn ơi bẹn có bài nào khó hơn cho mình làm được k giợ

 

16 tháng 12 2017

3 3,2 A B C H 1 2 1 2 1

Xét tam giác ABH và tam giác AHC có:

góc H1= góc H2(=90o)

góc A1= góc C1(Phụ góc A2)

\(\Rightarrow\)\(\Delta ABH\Omega\Delta AHC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AH}=\frac{AH}{HC}\Rightarrow AH^2=AB.HC=3.3,2=9,6\)

\(\Rightarrow AH=\sqrt{9,6}\approx3,1\left(cm\right)\)

Vây AH=3,1cm

15 tháng 12 2017

Ta chứng minh bđt: \(\frac{x}{\sqrt{x-1}}\ge2\)

Thật vậy ta có: \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\RightarrowĐPCM\)

Về bài toán, ta có:

\(\frac{a^2}{b-1}+\frac{b^2}{b-1}\ge2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\ge8\)

P/s: Ko chắc

15 tháng 12 2017

\(\frac{a^2}{a-1}+\frac{^2b}{b-1}\)\(min\)

\(\Rightarrow\)a-1 min,b-1 min

mà a,b>1\(\Rightarrow\)a-1,b-1>0\(\Rightarrow\)a-1,b-1=1\(\Rightarrow\)a,b=2

vậy

18 tháng 12 2017

O A C B D H I M

a) Tam giác COD và HOD là các tam giác vuông có chung cạnh huyền OD nên O, H, D, C cùng thuộc đường tròn đường kính OD.

b) Theo tính chất hai tiếp tuyến cắt nhau, ta có \(OD\perp BC\) 

Tam giác DIA và DHA là hai tam giác vuông có chung cạnh AD nên DIHA là tứ giác nội tiếp.

Vậy thì \(\widehat{IDA}=\widehat{IHO}\) 

Từ đó ta có \(\Delta IOH\sim\Delta AOD\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OH}{OD}\Rightarrow OH.OA=OI.OD\)

c) Xét tam giác vuông DBO, chiều cao BI, ta có:

\(OI.OD=OB^2\)  (Hệ thức lượng)

Mà \(OB^2=OM^2;OI.OD=OH.OA\Rightarrow OM^2=OH.OA\)

\(\Rightarrow\Delta OHM\sim\Delta OMA\left(c-g-c\right)\Rightarrow\widehat{OMA}=\widehat{OHM}=90^o\)

Vậy AM là tiếp tuyến của đường tròn (O).